‘CSC-I 1470

= Eric Ewing
’.. é .

Friday,  + .
-2/10/25

% Depth, and a Look Ahead

-
.. ’ . , . . -
. b , .
.‘. 4 o \ ’ : -

-
‘ | —
" ]
-

7 AR

Day 9: Hyperparameter-Tuhiig,

-
)

g . i . " - °" "\ll
Ty > e

-

o

|wDeep Learning | .-



Goals

(1) Hyperparameter Tuning
(1) A quick journey into topology
(2) AutoML
(3) Looking Ahead
(i) What can we not solve with MLPs?



Recap




Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1  hidden laver 2 hidden layer 3
input layer

How complex is the problem you are
trying to solve?

Process of (informed) trial and error.
How do you know if one hyper- mw

parameter setting is better than f < ,f;- %ﬁm,
\:Q,r ::.

another? CF :’ﬁ“*




How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

_ 2. Ifvalidation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher
than training loss?

Loss
Model.st.arts Your model has overfit, try
overfitting reducing its size
training
What if your validation loss and training loss
Epochs are both high?

Your model has underfit,
try increasing its size

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO



|s adding more width or depth better?

4« C&CI1470

CSCl11470 Deep Learning

Section SO01, CRN 26629
Spring 2025



Theoretical Approaches to Understanding Depth

Proofs:

- Are there functions that deep networks can represent better than
shallow networks (with similar numbers of neurons)?

Conceptual Understanding:
- Neural Networks and Manifolds for representation learning



Benefits of depth in neural networks

“For any positive integer k, there exist neural networks with ©(k?3) layers, ©(1)
nodes per layer, and O(1) distinct parameters which can not be approximated
by networks with O(k) layers unless they are exponentially large — they must

possess Q(2%)

nodes.”

There exist functions that

shallow networks cannot

represent as efficiently as
deep networks

Matus Telgarsky “Benefits of depth in neural networks”, JMLR

How well does theory match real
world applications? Are these
functions pathological?




Depth-Width Tradeoffs in Approximating Natural Functions with
Neural Networks

Itay Safran Ohad Shamir
Weizmann Institute of Science Weizmann Institute of Science
itay.safran@weizmann.ac.1il ohad.shamir@weizmann.ac.il

With the same number of total parameters, deep networks can learn more complex functions.

Recall that NNs are compositions of functions for which we are learning parameters:

Fa(i(j))

It’s better (in general) to have more functions composed than itis to have more complex functions



* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer

-,
N W L NN

g T, E.ﬂ:
2 ¥ e )
e :
o

- it R
i :a{h-...m@
Ferrr N W

*

o et
¥,

i

S f

A R ‘lﬂ-}r
T, iy
. -|| P,.

W1 = RlOXlO
m/2 € RlOXlO
W3 € RlOXlO
W4_ € RlOX4
Total = 340

A S R o l,.".,.‘,';,.- e 1) . -
AR ;"'Eﬁ": i:"""l:‘."l* 3 .:.H,r- K

o :ii!"-'_";-'!l::.- e W o -'_"_a""l'.i; e W _
BT e R T A T

T T
o e
= s T 2 B
R i) e’ o
o iy T e
i AR
e o -3 E -

" x i 2
o W= ,,:.wy 72
S SN

5 w‘*&ﬁ? ﬁ
g eyl e F o
e\ W &ﬁﬁ‘l_,};/
i ] e




* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total? W, € ngng
W, € R<%%

« What if we double the width of each hidden layer? W, € R20%20
W4, € RZOX4
Total =1080

. hidden layver 1 hidden laver 2 hidden layer 3
input layer

= 0 == o\
ST AR PN

o =i ri'!A::.. A J r_:;
Sl QN
e S Ry i S

VT e SN e

Ly

Ly N W
e @ s

o
S50 o%
% ek, : :ii;;-"l"".':
s <
T g T
s el e Pt L
N AR CARE
S SR
b, AR B o e
et
PN




* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total?

* What if we double the depth? of each hidden layer? W, € R10%10
W2 € RlOXlO
W3 € RlOXlO
, hidden layer 1  hidden layver 2  hidden layer 3 W, € RlOX1O
input layer 4
W5 € RlOXlO
ﬁiﬁ S .\ W, € R10%x10
_"’:‘f %l ?‘f}-—? \ ~.output layer W, € R10x4
’ o :*‘ﬁﬁ :‘:fwﬁ‘:;?\‘}% ) Total = 640

i-,. o .ﬁﬁh‘;‘_‘
Sy

L
TR %

i
| o)
T " |'|'.I.'ﬁ
"i Lo q l
X




The Manifold Hypothesis

Manifold: A space that appears locally like Euclidean space

Locally, the surface of the earth appears
like a flat plane in R?, while the earth
itself is a sphere(-ish) in R3

Hypothesis: real-world high-dimensional data lies on low-dimensional
manifolds embedded within the high-dimensional space.

Even though we may have d features in your data, it may require
many fewer features to fully represent.



MNIST and Manifolds

bbb lOOOOOOOOOOVOVOS
Qaeboao222C00000000002
48422222228565600000002
Hypothesis: real-world high-dimensional data lies on 44222222335556006652
low-dimensional manifolds embedded within the high- 94a42222233338858665852
: : 99428323223 333355855557
dimensional space. 99993333333333555557
9999993333333 8585s85s857r7
MNIST images are 28x28 or 784 pixels total. 7999999333333 3888587r77
7999999888333 88¢8¢858757
If we restrict our pixels to only being black or white (0 3 3 3 g g g g g g g g g 2 g : z :;5_;
784 TR
or 1), then there are 27°* possible images we can 7999999888666666¢66s5s
create. 7999999988666666¢6¢¢5vs
7994999993868 6666¢6¢6¢¢s
How many of these images are digits? 7999499999988 08¢6¢¢¢E¢¢<£ s
79999971739V 0006 ¢¢€¢€¢€4/
Our high-dimensional data is very sparse in high 77997711y b BT
dimensions, perhaps there is a lower dimensional 7777171 7 ryyvvvberrrrs/
7222223112320 00 02 0 22

space where it can be better represented.

A learned manifold of MNIST
Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019



Deep Networks and Representation Learning

Layer has inputs and
Neural network for binary classification one output that maps

inputs to [0, 1]

Looks a lot like a
perceptron...

Output Leyer

Hidden Layer

Input Layer




Perceptrons are Linear Separators

—> Output

2006



Meural network for binar

“Embeddi

ng” Layer

y classification

A\

Input Layer

Hidden Layer

y

If the network can achieve 100%
accuracy and the final layer is a linear
separator (ala a perceptron), what does
that imply about the embedding layer?

Neural Networks are learning to
transform data into new learned
“features” in the embedding layer. In the
case of classification, the NN tries to
learn linearly separable features.




A Linear Transformation applied A series of linear transformations
to (X, y) coordinates (4) applied to (x, y) coordinates to
separate a spiral

1_ _I T T T ] l B
0.5 — 0.5 | // .\\
/ N\
/
7
/ J
4] 0 / /
[ /
/f
/
0.5 0.5 \\\n ’j/
\ N—
\
-1 o ) ) = -1 [ : - -
-1 -0.5 0 0.5 1 1 -0.5 0 0.5

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Manifold Hypothesis

Data may be hard to classify in its original
form, but a series of transformations can

transform it to a representation where
classification is easy.

Neural Networks may be knot
“untanglers”

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



So How Many Layers/How Large Should the be?

* Finalembedding needs to be expressive enough to represent your
data in meaningful learned features

* Layer(s) before your embedding layer should be complex enough
to transform your data into the embedding features.

* You are unlikely to need more than three sequential linear layers
* Try constant layer width (e.g., 64 neurons for each hidden layer)
* Try “funnel” shape (e.g., 64->32->16->output)



Model Complexity

Model complexity: ~how many
parameters are in the model.

Optimal solution

A polynomial regression with 10
parameters is more complex
than a linear regression.

Underfitting

'
!
]
i
!
I
!

Model Complexity

Neural Networks do not necessarily follow this trend.

https://serokell.io/blog/bias-variance-tradeoff



Overparameterization

Playing Atari with Deep Reinforcement Learning

Overparametization: Using more
parameters than necessaryfora ML

problem. Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou
Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

~10,000 parameters in network




Overparameterization

Overparametization: Using more
parameters than necessaryfora ML
problem.

Most of the time, networks use many
more parameters than necessary.

In general, it’s impossible to know the
fewest amount of parameters that
could solve a problem.

PLAYING ATARI WITH S1x NEURONS

Giuseppe Cuccu Julian Togelius Philippe Cudré-Mauroux
eXascale Infolab Game Innovation Lab eXascale Infolab
Department of Computer Science Tandon School of Engineering Department of Computer Science
University of Fribourg, Switzerland New York University, NY, USA University of Fribourg, Switzerlar
name.surname@unifr.ch julian@togelius.com name . surname@unifr.ch
ABSTRACT

Deep reinforcement learning, applied to vision-based problems like Atari games, maps pixels directly to ac-
tions; internally, the deep neural network bears the responsibility of both extracting useful information and
making decisions based on it. By separating the image processing from decision-making, one could better
understand the complexity of each task, as well as potentially find smaller policy representations that are eas-
ier for humans to understand and may generalize better. To this end, we propose a new method for learning
policies and compact state representations separately but simultaneously for policy approximation in reinforce-
ment learning. State representations are generated by an encoder based on two novel algorithms: Increasing
Dictionary Vector Quantization makes the encoder capable of growing its dictionary size over time, to address
new observations as they appear in an open-ended online-learning context; Direct Residuals Sparse Coding
encodes observations by disregarding reconstruction error minimization, and aiming instead for highest infor-
mation inclusion. The encoder autonomously selects observations online to train on, in order to maximize code
sparsity. As the dictionary size increases, the encoder produces increasingly larger inputs for the neural net-
work: this is addressed by a variation of the Exponential Natural Evolution Strategies algorithm which adapts
its probability distribution dimensionality along the run. We test our system on a selection of Atari games using
tiny neural networks of only 6 to 18 neurons (depending on the game’s controls). These are still capable of
achieving results comparable—and occasionally superior—to state-of-the-art techniques which use two orders
of magnitude more neurons.



Overparameterization

PLAYING ATARI WITH S1x NEURONS

Giuseppe Cuccu Julian Togelius Philippe Cudré-Mauroux
eXascale Infolab Game Innovation Lab eXascale Infolab
Department of Computer Science Tandon School of Engineering Department of Computer Science
University of Fribourg, Switzerland New York University, NY, USA University of Fribourg, Switzerland
name.surname@unifr.ch julian@togelius.com name.surname@unifr.ch
ABSTRACT
) ) Deep reinforcement learning, applied to vision-based problems like Atari games, maps pixels directly to ac-
This paper uses Evolutiona ry tions; internally, the deep neural network bears the responsibility of both extracting useful information and

Strate gies (ES) to learn embeddin gs. making decisions based on it. By separating the image processing from decision-making, one could better
understand the complexity of each task, as well as potentially find smaller policy representations that are eas-
ier for humans to understand and may generalize better. To this end, we propose a new method for learning
policies and compact state representations separately but simultaneously for policy approximation in reinforce-
ment learning. State representations are generated by an encoder based on two novel algorithms: Increasing
Dictionary Vector Quantization makes the encoder capable of growing its dictionary size over time, to address
new observations as they appear in an open-ended online-learning context; Direct Residuals Sparse Coding
encodes observations by disregarding reconstruction error minimization, and aiming instead for highest infor-
mation inclusion. The encoder autonomously selects observations online to train on, in order to maximize code
sparsity. As the dictionary size increases, the encoder produces increasingly larger inputs for the neural net-
work: this is addressed by a variation of the Exponential Natural Evolution Strategies algorithm which adapts
its probability distribution dimensionality along the run. We test our system on a selection of Atari games using
tiny neural networks of only 6 to 18 neurons (depending on the game’s controls). These are still capable of
achieving results comparable—and occasionally superior—to state-of-the-art techniques which use two orders
of magnitude more neurons.



Overparameterization

Bias-Variance Tradeoff
(Traditional Understanding)

Bias?
Optimal solution
Total error

@ Variance

Underfitting
zone

Overfitting

1 zone

8
!
!
i
|
1
!

Model Complexity

If you are overfitting, reduce model complexity
(smaller width/fewer layers). If underfitting, add
more model complexity.

https://serokell.io/blog/bias-variance-tradeoff

(We will cover other techniques for managing soon!)

A Farewell to the Bias-Variance Tradeoff?
An Overview of the Theory of Overparameterized Machine Learning

Yehuda Dar* Vidya Muthukumar’ Richard G. Baraniuk*

Abstract

The rapid recent progress in machine learning (ML) has raised a number of scientific questions
that challenge the longstanding dogma of the field. One of the most important riddles is the good
empirical generalization of overparameterized models. Overparameterized models are excessively
complex with respect to the size of the training dataset, which results in them perfectly fitting
(i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is
traditionally associated with detrimental overfitting, and yet a wide range of interpolating models
— from simple linear models to deep neural networks — have recently been observed to generalize
extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon
has revealed that highly overparameterized models often improve over the best underparameterized
model in test performance.

Understanding learning in this overparameterized regime requires new theory and foundational
empirical studies, even for the simplest case of the linear model. The underpinnings of this under-
standing have been laid in very recent analyses of overparameterized linear regression and related
statistical learning tasks, which resulted in precise analytic characterizations of double descent.
This paper provides a succinct overview of this emerging theory of overparameterized ML (hence-
forth abbreviated as TOPML) that explains these recent findings through a statistical signal pro-
cessing perspective. We emphasize the unique aspects that define the TOPML research area as a
subfield of modern ML theory and outline interesting open questions that remain.



Optimizers

* SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp, Shampoo... the list is ever growing

* How do you choose between them?

* Just use Adam (at least to start)
» “Safest” of the optimizers and most forgiving if learning rate is bad
* The only downside is that it might work so well that you end up overfitting.
* Suggested initial learning rate of 3e-4



Batch Size and Learning Rate

Having too small a batch or too high a learning rate can cause
variance in training/validation loss — symptoms often look similar

model accuracy Loss
0.875 ] — train 1.075 A —— train
test validation
0.850 1.050 7
0.825 1.025 4
> 0.800 4 ' 1.000 -
E I|l
g 0.775 1 0.975 -
2 |
0.750 1 0.950 -
0.725 0.925 4
0.700
0.900 A
0.675
T T T T T T T T T 0.875 _
0 25 50 75 100 125 150 175 200

epoch



General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking, /\
7/( come up with a hypothesis and test your hypothesis. 7/(
(Use the scientific method)

Andrej Karpathy: A recipe for training neural networks
https://karpathy.github.i0/2019/04/25/recipe/



https://karpathy.github.io/2019/04/25/recipe/

AutoML

Neural Architecture Search (NAS)

Changing hyperparameters results in different performance, can we
run an optimization algorithm on our hyperparameters?

Optimizer
Evolutionary al gorithm ) Candidat . .
e i e architccre | archiectwres P10 cons:
nforcement leaming generation_| m D—@ - No longer need - Takes avery long time...
< ) D:f;)“ﬂ human input - Hyperparameters are discrete
ra\z [ % ] - Mayfind better and highly dependent (e.g.,
h = hyperparameters width/depth), it’s a really hard
F
Performance evaluator than humans optimization problem...
Training and validation .
Model Parameter sharing Performance
Updatc Surmgﬂ[e modeal Cvaluatiﬂn

oooooo

T LU ol
I;\.\| '_(\‘\_X _\_“|

adx By B

https://www.researchgate.net/publication/353166978_Action_Command_Encoding_for_Surrogate_Assisted_Neural_Architecture_Search



AutoML

Option #1: Grid search

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try every combination of hyperparameters possible, pick setting
with best validation set performance.

What are some downsides of grid search?




AutoML

Option #2: Bayesian Optimization

We believe the performance of hyperparameters that are
close together, should have similar results.

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try sets of possible hyperparameters, each with some probability.

- The probability that you try a specific hyperparameter setting
depends on the performance of nearby hyperparameter settings.

- Also track uncertainty of hyperparameters (i.e., settings you have
not tried something close to before)



AutoML

Keras tuner is compatible with Tensorflow, Pytorch, and Jax and has
various automatic hyperparameter tuning methods

KerasTuner

C)star 2,871

KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain
points of hyperparameter search. Easily configure your search space with a define-by-run syntax,
then leverage one of the available search algorithms to find the best hyperparameter values for
your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search
algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment

with new search algorithms.



Looking Forward

Up until this point, we’ve covered Neural Networks generally
referred to as MLPs, feed forward networks, or networks made up of

“Linear Layers”
Up next: Convolutional Neural Networks

What happens if our inputimage is shifted?




Looking Forward

MLPs have a fixed number of inputs and outputs

Problem: We collect patient medical data from doctor’s visits to
make predictions about a disease prognosis.

Patients visit the doctor multiple times, but not the same number of
times.

How can we make predictions when given a sequence of inputs?

Solution: Recurrent Neural Networks and Attention



Looking Forward

Ok, so given we can take in inputs of sequences (perhaps, a
sentence), how can we use that input to generate something rather
than perform classification/regression?

CLIP objective

im
— -t > 9

encoder

“a corgi

[l EE EEN

playing a
flame (RSN W |
throwing B
" - '/”*/"\'\v \ —
trumpet 00000 B
m
________________________________________ O O B
—0+0+0Of— H
O O —
prior decoder

https://nathanfradet.com/posts/text-to-image/



Recap



	Slide 1
	Slide 2: Goals
	Slide 3: Recap
	Slide 4: Hidden Layers
	Slide 5: How to use the Validation Set
	Slide 6: Is adding more width or depth better?
	Slide 7: Theoretical Approaches to Understanding Depth
	Slide 8: Benefits of depth in neural networks
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: The Manifold Hypothesis
	Slide 14: MNIST and Manifolds
	Slide 15: Deep Networks and Representation Learning
	Slide 16: Perceptrons are Linear Separators
	Slide 17
	Slide 18
	Slide 19: Manifold Hypothesis
	Slide 20: So How Many Layers/How Large Should the be?
	Slide 21: Model Complexity
	Slide 22: Overparameterization
	Slide 23: Overparameterization
	Slide 24: Overparameterization
	Slide 25: Overparameterization
	Slide 26: Optimizers
	Slide 27: Batch Size and Learning Rate
	Slide 28: General Tips
	Slide 29: AutoML
	Slide 30: AutoML
	Slide 31: AutoML
	Slide 32: AutoML
	Slide 33: Looking Forward
	Slide 34: Looking Forward
	Slide 35: Looking Forward
	Slide 36: Recap

