
Deep Learning

Eric Ewing

CSCI 1470

Friday,
2/10/25

Day 9: Hyperparameter Tuning, 
Depth, and a Look Ahead



Goals

(1) Hyperparameter Tuning
 (i) A quick journey into topology
(2) AutoML
(3) Looking Ahead
 (i) What can we not solve with MLPs?



Recap

DL Frameworks (e.g., Tensorflow) use 
autograd computation graphs to 

calculate gradients with backprop

Hyperparameters are the parameters 
of learning that we have control of

How many layers? How big should 
each layer be?



Hidden Layers

• How deep (# hidden layers) should your network be?
• How wide (# neurons in a layer) should your network be?

How complex is the problem you are 
trying to solve?

Process of (informed) trial and error.
How do you know if one hyper-

parameter setting is better than 
another?



How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

Model starts 
overfitting

Early Stopping Algorithm
1. Track training loss and validation loss
2. If validation loss starts to increase, terminate

What if your validation loss is much higher 
than training loss?

Your model has overfit, try 
reducing its size

What if your validation loss and training loss 
are both high?

Your model has underfit, 
try increasing its size



Is adding more width or depth better?



Theoretical Approaches to Understanding Depth

Proofs:
- Are there functions that deep networks can represent better than 

shallow networks (with similar numbers of neurons)?

Conceptual Understanding:
- Neural Networks and Manifolds for representation learning



Benefits of depth in neural networks

“For any positive integer k, there exist neural networks with Θ(k3) layers, Θ(1) 
nodes per layer, and Θ(1) distinct parameters which can not be approximated 
by networks with O(k) layers unless they are exponentially large — they must 
possess Ω(2𝑘) nodes.”

Matus Telgarsky “Benefits of depth in neural networks”, JMLR

There exist functions that 
shallow networks cannot 
represent as efficiently as 

deep networks

How well does theory match real 
world applications? Are these 

functions pathological?



With the same number of total parameters, deep networks can learn more complex functions.

Recall that NNs are compositions of functions for which we are learning parameters:

𝑓(𝑔(ℎ 𝑖 𝑗 𝑥

It’s better (in general) to have more functions composed than it is to have more complex functions



• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
many weights are there total? 𝑊1 ∈ ℝ10×10

𝑊2 ∈ ℝ10×10

𝑊3 ∈ ℝ10×10

𝑊4 ∈ ℝ10×4

Total = 340



• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
many weights are there total?

• What if we double the width of each hidden layer?
𝑊1 ∈ ℝ10×20

𝑊2 ∈ ℝ20×20

𝑊3 ∈ ℝ20×20

𝑊4 ∈ ℝ20×4

Total =1080



• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
many weights are there total?

• What if we double the depth? of each hidden layer? 𝑊1 ∈ ℝ10×10

𝑊2 ∈ ℝ10×10

𝑊3 ∈ ℝ10×10

𝑊4 ∈ ℝ10×10

𝑊5 ∈ ℝ10×10

𝑊6 ∈ ℝ10×10

𝑊7 ∈ ℝ10×4

Total = 640



The Manifold Hypothesis

Manifold: A space that appears locally like Euclidean space

Hypothesis: real-world high-dimensional data lies on low-dimensional 
manifolds embedded within the high-dimensional space.

Even though we may have 𝑑 features in your data, it may require 
many fewer features to fully represent.

Locally, the surface of the earth appears 
like a flat plane in ℝ2, while the earth 

itself is a sphere(-ish) in ℝ3



MNIST and Manifolds

A learned manifold of MNIST

Hypothesis: real-world high-dimensional data lies on 
low-dimensional manifolds embedded within the high-
dimensional space.

MNIST images are 28x28 or 784 pixels total. 

If we restrict our pixels to only being black or white (0 
or 1), then there are 2784 possible images we can 
create.

How many of these images are digits?

Our high-dimensional data is very sparse in high 
dimensions, perhaps there is a lower dimensional 
space where it can be better represented.

Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019



Deep Networks and Representation Learning

Layer has inputs and 
one output that maps 
inputs to [0, 1]

Looks a lot like a 
perceptron…



Perceptrons are Linear Separators

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

Output



“Embedding” Layer

If the network can achieve 100% 
accuracy and the final layer is a linear 
separator (ala a perceptron), what does 
that imply about the embedding layer?

Neural Networks are learning to 
transform data into new learned 
“features” in the embedding layer. In the 
case of classification, the NN tries to 
learn linearly separable features.



A Linear Transformation applied 
to (x, y) coordinates

A series of linear transformations 
(4) applied to (x, y) coordinates to 
separate a spiral

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Manifold Hypothesis

Data may be hard to classify in its original 
form, but a series of transformations can 
transform it to a representation where 
classification is easy.

Neural Networks may be knot 
“untanglers”

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



So How Many Layers/How Large Should the be?

• Final embedding needs to be expressive enough to represent your 
data in meaningful learned features

• Layer(s) before your embedding layer should be complex enough 
to transform your data into the embedding features.

• You are unlikely to need more than three sequential linear layers
• Try constant layer width (e.g., 64 neurons for each hidden layer)
• Try “funnel” shape (e.g., 64->32->16->output)



Model Complexity

Model complexity: ~how many 
parameters are in the model.

A polynomial regression with 10 
parameters is more complex 
than a linear regression.

https://serokell.io/blog/bias-variance-tradeoff

Neural Networks do not necessarily follow this trend.



Overparameterization

Overparametization: Using more 
parameters than necessary for a ML 
problem.

~10,000 parameters in network



Overparameterization

Overparametization: Using more 
parameters than necessary for a ML 
problem.

~10,000 parameters in network

Most of the time, networks use many 
more parameters than necessary.

In general, it’s impossible to know the 
fewest amount of parameters that 
could solve a problem.



Overparameterization

~10,000 parameters in network

This paper uses Evolutionary 
Strategies (ES) to learn embeddings.



Overparameterization

https://serokell.io/blog/bias-variance-tradeoff

Bias-Variance Tradeoff 
(Traditional Understanding)

If you are overfitting, reduce model complexity 
(smaller width/fewer layers). If underfitting, add 

more model complexity.

(We will cover other techniques for managing soon!)



Optimizers

• SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam), 
RMSProp, Shampoo… the list is ever growing

• How do you choose between them?

• Just use Adam (at least to start)
• “Safest” of the optimizers and most forgiving if learning rate is bad
• The only downside is that it might work so well that you end up overfitting.
• Suggested initial learning rate of 3e-4



Batch Size and Learning Rate

Having too small a batch or too high a learning rate can cause 
variance in training/validation loss – symptoms often look similar



General Tips

- Don’t change too much at once.
- Keep track of parameters you’ve tested and track their 

performance
- Don’t just randomly guess parameters, apply critical thinking, 

come up with a hypothesis and test your hypothesis.
(Use the scientific method)
Andrej Karpathy: A recipe for training neural networks 
https://karpathy.github.io/2019/04/25/recipe/

https://karpathy.github.io/2019/04/25/recipe/


AutoML

Neural Architecture Search (NAS)
Changing hyperparameters results in different performance, can we 
run an optimization algorithm on our hyperparameters?

Pros:
- No longer need 

human input
- May find better 

hyperparameters 
than humans

Cons:
- Takes a very long time…
- Hyperparameters are discrete 

and highly dependent (e.g., 
width/depth), it’s a really hard 
optimization problem…

https://www.researchgate.net/publication/353166978_Action_Command_Encoding_for_Surrogate_Assisted_Neural_Architecture_Search



AutoML

Option #1: Grid search

Define a set of possible parameters (i.e., learning rates, width, 
depth, etc)

Try every combination of hyperparameters possible, pick setting 
with best validation set performance.

What are some downsides of grid search?



AutoML

Option #2: Bayesian Optimization

Define a set of possible parameters (i.e., learning rates, width, 
depth, etc)

Try sets of possible hyperparameters, each with some probability. 
- The probability that you try a specific hyperparameter setting 

depends on the performance of nearby hyperparameter settings.
- Also track uncertainty of hyperparameters (i.e., settings you have 

not tried something close to before)

We believe the performance of hyperparameters that are 
close together, should have similar results.



AutoML

Keras tuner is compatible with Tensorflow, Pytorch, and Jax and has 
various automatic hyperparameter tuning methods



Looking Forward

Up until this point, we’ve covered Neural Networks generally 
referred to as MLPs, feed forward networks, or networks made up of 
“Linear Layers”
Up next: Convolutional Neural Networks

What happens if our input image is shifted?



Looking Forward

MLPs have a fixed number of inputs and outputs
Problem: We collect patient medical data from doctor’s visits to 
make predictions about a disease prognosis. 
Patients visit the doctor multiple times, but not the same number of 
times. 
How can we make predictions when given a sequence of inputs?

Solution: Recurrent Neural Networks and Attention



Looking Forward

Ok, so given we can take in inputs of sequences (perhaps, a 
sentence), how can we use that input to generate something rather 
than perform classification/regression?

https://nathanfradet.com/posts/text-to-image/



Recap

The rest of this course will build on the foundation of 
MLPs to introduce flexibility to our learned systems

The number of neurons and size of neurons are 
determine a model’s complexity. Models with high 

complexity will tend to overfit, low complexity underfit.

Deep MLPs tend to be more “efficient” than wide MLPs

Understanding how MLPs learn parameters is essential 
for hyperparameter tuning.


	Slide 1
	Slide 2: Goals
	Slide 3: Recap
	Slide 4: Hidden Layers
	Slide 5: How to use the Validation Set
	Slide 6: Is adding more width or depth better?
	Slide 7: Theoretical Approaches to Understanding Depth
	Slide 8: Benefits of depth in neural networks
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: The Manifold Hypothesis
	Slide 14: MNIST and Manifolds
	Slide 15: Deep Networks and Representation Learning
	Slide 16: Perceptrons are Linear Separators
	Slide 17
	Slide 18
	Slide 19: Manifold Hypothesis
	Slide 20: So How Many Layers/How Large Should the be?
	Slide 21: Model Complexity
	Slide 22: Overparameterization
	Slide 23: Overparameterization
	Slide 24: Overparameterization
	Slide 25: Overparameterization
	Slide 26: Optimizers
	Slide 27: Batch Size and Learning Rate
	Slide 28: General Tips
	Slide 29: AutoML
	Slide 30: AutoML
	Slide 31: AutoML
	Slide 32: AutoML
	Slide 33: Looking Forward
	Slide 34: Looking Forward
	Slide 35: Looking Forward
	Slide 36: Recap

