
Deep Learning

Eric Ewing

CSCI 1470

Friday,
2/7/25

Day 8: Autograd and Hyperparameters

















Computation Graph

𝑒 = 𝑎 + 𝑏 ⋅ (𝑏 + 1)



Computation Graph and Derivatives

https://maucher.pages.mi.hdm-stuttgart.de/artificial-intelligence/00_Computational_Graphs.html



Tensorflow Gradient Tape

- Tensorflow will maintain a compute graph of operations 
performed within a Gradient Tape context

- Can automatically differentiate operations on request

- This is the purpose and usefulness of Deep Learning Frameworks!
- For the most part, you only have to specify the forward operations 

and TF (or Torch/Jax) will take care of the rest.



Why should you care about compute graphs?

Running loss’ compute 
graph will contain the 

compute graph of loss!

The memory required to 
store running_loss will only 

ever increase! 

(This is much more of a common issue in pytorch than tensorflow)



DL Frameworks

• Main current frameworks are Tensorflow, Pytorch, and Jax
• TF and torch are becoming increasingly similar in style and 

performance
• Jax is new and different

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/



Tensorflow



Tensorflow

- Developed and maintained by Google



Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will 

figure out how to use it)



Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will 

figure out how to use it)

- “Easier to deploy to production” (has been the general consensus 
previously, but other frameworks have caught up)



Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will 

figure out how to use it)

- “Easier to deploy to production” (has been the general consensus 
previously, but other frameworks have caught up)

- TF lite for on device applications (e.g., phones)



Pytorch



Pytorch

• Developed by Facebook AI (now Meta)



Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community



Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes



Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not. 

If a tensor is trainable then all operations on it are tracked.



Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not. 

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware



Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not. 

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware
• Harder to track stats

• (I still use TF’s tensorboard stat tracker when using Pytorch)



Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not. 

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware
• Harder to track stats

• (I still use TF’s tensorboard stat tracker when using Pytorch)
• Easier to learn and use than tensorflow

• Better error reporting, training code is harder to write but easier to debug



Jax



Jax

• Also developed by Google…



Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow



Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster



Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster
• Takes advantage of Just In Time (JIT) compiling to speed up 

execution



Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster
• Takes advantage of Just In Time (JIT) compiling to speed up 

execution
• Functional programming paradigm



Hyperparameter Tuning



Hyperparameters

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Hidden Layer Output Layer

What do you (the programmer) have control 
of when training neural networks?

?

?

?

- Network Initialization
- Hidden Layer Size
- Number of hidden layers
- Activation Functions
- Optimizer (SGD, Adam, RMSProp)
- Batch Size
- Learning rate
- Number of Epochs



Hyperparameters

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

The parameters of a Neural 
Network are what is trained (e.g., 
weights and biases).

The hyperparameters of a 
Neural Network are the 
parameters that you have 
control of that control that 
training.



Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

What if we begin with all 
parameters set to 0?

All neurons would have the same 
value, gradients would be the same.



Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1 
(works fine)

But… what if there are many many weights in a layer? 
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:
Uniform: Initialize each weight uniformly at random in 
the range [-x, x] with x = 6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Normal: Initialize each weight with mean 0 and 
standard deviation 𝜎 =

2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Variance of a random variable in fixed 

range [-x, x] is 𝑥
2

3
 (easy to derive from 

definition of variance)



Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1 
(works fine)

But… what if there are many many weights in a layer? 
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:
Uniform: Initialize each weight uniformly at random in 
the range [-x, x] with x = 6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Normal: Initialize each weight with mean 0 and 
standard deviation 𝜎 =

2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
Keeps variance of z and gradients of 
weights the same for each layer at 

initialization.

Understanding the difficulty of training deep feedforward neural networks. Xavier Glorot, Yoshua Bengio



Hidden Layers

• How deep (# hidden layers) should your network be?
• How wide (# neurons in a layer) should your network be?

How complex is the problem you are 
trying to solve?

Process of (informed) trial and error.
How do you know if one hyper-

parameter setting is better than 
another?



How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

Model starts 
overfitting

Early Stopping Algorithm
1. Track training loss and validation loss
2. If validation loss starts to increase, terminate

What if your validation loss is much higher 
than training loss?

Your model has overfit, try 
reducing its size

What if your validation loss and training loss 
are both high?

Your model has underfit, 
try increasing its size



Is adding more width or depth better?



With the same number of total parameters, deep networks can learn more complex functions.

Recall that NNs are compositions of functions for which we are learning parameters:

𝑓(𝑔(ℎ 𝑖 𝑗 𝑥

It’s better (in general) to have more functions composed than it is to have more complex functions



• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
many weights are there total? 𝑊1 ∈ ℝ10×10

𝑊2 ∈ ℝ10×10

𝑊3 ∈ ℝ10×10

𝑊4 ∈ ℝ10×4

Total = 340



• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
many weights are there total?

• What if we double the width of each hidden layer?
𝑊1 ∈ ℝ10×20

𝑊2 ∈ ℝ20×20

𝑊3 ∈ ℝ20×20

𝑊4 ∈ ℝ20×4

Total =1080



• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
many weights are there total?

• What if we double the depth? of each hidden layer? 𝑊1 ∈ ℝ10×10

𝑊2 ∈ ℝ10×10

𝑊3 ∈ ℝ10×10

𝑊4 ∈ ℝ10×10

𝑊5 ∈ ℝ10×10

𝑊6 ∈ ℝ10×10

𝑊7 ∈ ℝ10×4

Total = 640



Overparameterization

Overparametization: Using more 
parameters than necessary for a ML 
problem.

~10,000 parameters in network



Overparameterization

Overparametization: Using more 
parameters than necessary for a ML 
problem.

~10,000 parameters in network

Most of the time, networks use many 
more parameters than necessary.

In general, it’s impossible to know the 
fewest amount of parameters that 
could solve a problem.



Overparameterization

~10,000 parameters in network

(This paper doesn’t use SGD or 
backprop, but another optimization 
method)



Overparameterization

https://serokell.io/blog/bias-variance-tradeoff

Bias-Variance Tradeoff 
(Traditional Understanding)

If you are overfitting, reduce model complexity 
(smaller width/fewer layers). If underfitting, add 

more model complexity.

(We will cover other techniques for managing 
overfitting next week)



Optimizers

• SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam), 
RMSProp,… the list is ever growing

• How do you choose between them?

• Just use Adam.
• The only downside is that it might work so well that you end up overfitting.
• Suggested initial learning rate of 3e-4



Batch Size and Learning Rate

Having too small a batch or too high a learning rate can cause 
variance in training/validation loss – symptoms often look similar



General Tips

- Don’t change too much at once.
- Keep track of parameters you’ve tested and track their 

performance
- Don’t just randomly guess parameters, apply critical thinking, 

come up with a hypothesis and test your hypothesis.
(Use the scientific method)
Andrej Karpathy: A recipe for training neural networks 
https://karpathy.github.io/2019/04/25/recipe/

https://karpathy.github.io/2019/04/25/recipe/


Recap

DL Frameworks are ever evolving, but can handle 
gradient computations automatically with 

compute graphs.

Hyperparameter tuning is an experimental 
process, use the scientific method!

You need to have a fundamental understanding of 
what you expect to have happen when you change 

each hyperparameter.



AutoML (If time)

Neural Architecture Search (NAS)
Changing hyperparameters results in different performance, can we 
run an optimization algorithm on our hyperparameters?

Pros:
- No longer need 

human input
- May find better 

hyperparameters 
than humans

Cons:
- Takes a very long time…
- Hyperparameters are discrete 

and highly dependent (e.g., 
width/depth), it’s a really hard 
optimization problem…

https://www.researchgate.net/publication/353166978_Action_Command_Encoding_for_Surrogate_Assisted_Neural_Architecture_Search



AutoML (If time)

Option #1: Grid search

Define a set of possible parameters (i.e., learning rates, width, 
depth, etc)

Try every combination of hyperparameters possible, pick setting 
with best validation set performance.

What are some downsides of grid search?



AutoML (If time)

Option #2: Bayesian Optimization

Define a set of possible parameters (i.e., learning rates, width, 
depth, etc)

Try sets of possible hyperparameters, each with some probability. 
- The probability that you try a specific hyperparameter setting 

depends on the performance of nearby hyperparameter settings.
- Also track uncertainty of hyperparameters (i.e., settings you have 

not tried something close to before)

We believe the performance of hyperparameters that are 
close together, should have similar results.



AutoML (If time)

Keras tuner is compatible with Tensorflow, Pytorch, and Jax and has 
various automatic hyperparameter tuning methods



Looking Forward

Up until this point, we’ve covered Neural Networks generally 
referred to as MLPs, feed forward networks, or networks made up of 
“Linear Layers”
Up next: Convolutional Neural Networks

What happens if our input image is shifted?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Computation Graph
	Slide 10: Computation Graph and Derivatives
	Slide 11: Tensorflow Gradient Tape
	Slide 12: Why should you care about compute graphs?
	Slide 13: DL Frameworks
	Slide 14: Tensorflow
	Slide 15: Tensorflow
	Slide 16: Tensorflow
	Slide 17: Tensorflow
	Slide 18: Tensorflow
	Slide 19: Pytorch
	Slide 20: Pytorch
	Slide 21: Pytorch
	Slide 22: Pytorch
	Slide 23: Pytorch
	Slide 24: Pytorch
	Slide 25: Pytorch
	Slide 26: Pytorch
	Slide 27: Jax
	Slide 28: Jax
	Slide 29: Jax
	Slide 30: Jax
	Slide 31: Jax
	Slide 32: Jax
	Slide 33: Hyperparameter Tuning
	Slide 34: Hyperparameters
	Slide 35: Hyperparameters
	Slide 36: Network Initialization
	Slide 37: Network Initialization
	Slide 38: Network Initialization
	Slide 39: Hidden Layers
	Slide 40: How to use the Validation Set
	Slide 41: Is adding more width or depth better?
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Overparameterization
	Slide 47: Overparameterization
	Slide 48: Overparameterization
	Slide 49: Overparameterization
	Slide 50: Optimizers
	Slide 51: Batch Size and Learning Rate
	Slide 52: General Tips
	Slide 53: Recap
	Slide 54: AutoML (If time)
	Slide 55: AutoML (If time)
	Slide 56: AutoML (If time)
	Slide 57: AutoML (If time)
	Slide 58: Looking Forward

