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Generalizing Backpropagation

* What if we want to add another layer to our model?

e Calculating derivatives by hand again is a lot of work %

- - .
- - L

input linear layer new layer softmax loss




Computer-based Derivatives

~ Numeric differentiation

A f(x+Ax)—f(x)
dx Ax
* Pick a small step size Ax

* Also called “finite differences”




Computer-based Derivatives

Ax = 0.5
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~ Numeric differentiation

L A4f  fOe+A0)—f(x)
dx Ax
* Pick a small step size Ax

 Also called “Finite differences”
* Easy to implement
« Arbitrarily inaccurate/unstable




Computer-based Derivatives

* Numeric differentiation
d/dx (2x + 3x*2 + x (6 - 2))

* Symbolic differentiation

e Computer “does algebra” and ffo Extended Keyboard * Upload
simplifies expressions

* What Wolfram Alpha does

Derivative:
https://www.wolframalpha.com/

d i ‘
—(2x+3x" +x(6-2))=6(x+1)

dx \ /

d 6x + 3x2
dx(x x“)



Computer-based Derivatives

* Numeric differentiation * Example:

* Symbolic differentiation
* Computer “does algebra” and

while abs(x) > 5:

simplifies expressions X=X/ 2
* What Wolfram Alpha does
* Exact (no approximation error) * This loop could run once or 100
« Complex to implement times, it’s impossible to know

* Only handles static expressions
(what about e.g. loops?)



Computer-based Derivatives

* Numeric differentiation
e Symbolic differentiation

e Automatic differentiation
e Use the chain rule at runtime

Chain Rule

Y ¢ Y ¢ )

h(x)

g(h(x))

(9(h(x)




Computer-based Derivatives

* Numeric differentiation  sinx + cos?x = 1
« Symbolic differentiation « Automatic differentiation doesn'’t
o o know this identity, will end up
* Automatic differentiation evaluating the entire expression
* Use the chain rule at runtime on the left hand side

* Gives exact results

* Handles dynamics (loops, etc.)
 Easier to implement

e Can’t simplify expressions



Computation Graph

e=(@a+b)-(b+1)



Computation Graph and Derivatives
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https://maucher.pages.mi.hdm-stuttgart.de/artificial-intelligence/00_Computational_Graphs.html



Tensorflow Gradient Tape

- Tensorflow will maintain a compute graph of operations
performed within a Gradient Tape context
- Can automatically differentiate operations on request

- This is the purpose and usefulness of Deep Learning Frameworks!

- For the most part, you only have to specify the forward operations
and TF (or Torch/Jax) will take care of the rest.



Why should you care about compute graphs?

(This is much more of acommon issue in pytorch than tensorflow)

def train_with_memory_leak():
running_loss = 0.0
for epoch in range(100):
for i, (inputs, targets) in enumerate(loader):
optimizer.zero_grad()
outputs = model(inputs)

loss = criterion(outputs, targets)

Running loss’ compute 105§ : ?aCkwa rd()
graph will contain the optimizer.step()
compute graph of loss!

running_loss += loss

The memory required to if 1 % 10 == 9:
store running_loss will only print(f'Loss: {running_loss / 10}"')
ever increase! running_loss = 0.0




DL Frameworks © pyTorch Tenl,‘mow

* Main current frameworks are Tensorflow, Pytorch, and Jax

* TF and torch are becoming increasingly similar in style and
performance

e Jax is new and different

Percentage of Repositories by Framework B other [ PyTorch [ TensorFlow Number of Job Postings by Framework
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Tensor Flow [ PyTorch
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Mumber of Postings
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0

Linkedin ZipRecruiter Indeed

Repository creation date
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
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Tensorflow

- Developed and maintained by Google

- In addition to autodiff features it also provides:
- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)

- Strong support for hardware acceleration (i.e., if you have a GPU, TF will
figure out how to use it)

- “Easier to deploy to production” (has been the general consensus
previously, but other frameworks have caught up)

- TF lite for on device applications (e.g., phones)



Pytorch
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Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

* No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.
If a tensor is trainable then all operations on it are tracked.

* Slightly more work to use GPUs or other hardware

* Harder to track stats
* (I stilluse TF’s tensorboard stat tracker when using Pytorch)

* Easier to learn and use than tensorflow
* Better error reporting, training code is harder to write but easier to debug
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Jax

* Also developed by Google...
* Very new compared to Pytorch and Tensorflow
* Much Faster

* Takes advantage of Just In Time (JIT) compiling to speed up
execution

* Functional programming paradigm



Hyperparameter Tuning



Hyperparameters

- Network Initialization
- Hidden Layer Size

What do you (the programmer) have control - Nurpbgr of hiddgn layers
of when training neural networks? - Activation Functions
- Optimizer (SGD, Adam, RMSProp)
- Batch Size

- Learningrate
- Number of Epochs

W5 v
> Y [— Output

i
/

Hidden Layer Output Layer




Hyperparameters

The parameters of a Neural
Network are what is trained (e.g.,
weights and biases).

The hyperparameters of a

b Neural Network are the
parameters that you have
D \ b control of that control that
We | training.
> Y [— Output
b Ws




Network Initialization

What if we begin with all
parameters setto 0?

All neurons would have the same
value, gradients would be the same.

W5 v
> Y [— Output




Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

But... what if there are many many weights in a layer?
The scale of the output can grow.

/

|dea #2: Xavier (Glorot) initialization:

Y. — Output

Uniform: Initialize each weight uniformly at random in
. 6
b Ws the range [-x, x]withx = [———
Nin+Nout

Z /
Normal: Initialize each

weight with mean 0 and
Variance of arandom variable in fixed - 2
5 standard deviation g = [———
Nin+tNout

range [-X, X] is % (easy to derive from

definition of variance)




Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

b But... what if there are many many weights in a layer?
The scale of the output can grow.

Ws - |dea #2: Xavier (Glorot) initialization:
>, — Output - : : :
Uniform: Initialize each weight uniformly at random in
b Ws the range [-x, x] with x = /;
Nin+Nout
)

Normal: Initialize each weight with mean 0 and
: : . , 2
Keeps variance of z and gradients of |standard deviationo = |————
Nin+Nout

weights the same for each layer at
initialization.

Understanding the difficulty of training deep feedforward neural networks. Xavier Glorot, Yoshua Bengio



Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1  hidden laver 2 hidden layer 3
input layer

How complex is the problem you are
trying to solve?

Process of (informed) trial and error.
How do you know if one hyper- mw

parameter setting is better than f < ,f;- %ﬁm,
\:Q,r ::.

another? CF :’ﬁ“*




How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

_ 2. Ifvalidation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher
than training loss?

Loss
Model.st.arts Your model has overfit, try
overfitting reducing its size
training
What if your validation loss and training loss
Epochs are both high?

Your model has underfit,
try increasing its size

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO



|s adding more width or depth better?
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Depth-Width Tradeoffs in Approximating Natural Functions with
Neural Networks

Itay Safran Ohad Shamir
Weizmann Institute of Science Weizmann Institute of Science
itay.safran@weizmann.ac.il ohad.shamir@weizmann.ac.1il

With the same number of total parameters, deep networks can learn more complex functions.

Recall that NNs are compositions of functions for which we are learning parameters:

Fa(i(j))

It’s better (in general) to have more functions composed than itis to have more complex functions



* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer
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* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total? W, € ngng
W, € R<%%

« What if we double the width of each hidden layer? W, € R20%20
W4, € RZOX4
Total =1080

. hidden layver 1 hidden laver 2 hidden layer 3
input layer
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* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total?

* What if we double the depth? of each hidden layer? W, € R10%10
W2 € RlOXlO
W3 € RlOXlO
, hidden layer 1  hidden layver 2  hidden layer 3 W, € RlOX1O
input layer 4
W5 € RlOXlO
ﬁiﬁ S .\ W, € R10%x10
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Overparameterization

Overparametization: Using more
parameters than necessaryfora ML
problem.

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

~10,000 parameters in network



Overparameterization

Overparametization: Using more
parameters than necessaryfora ML
problem.

Most of the time, networks use many
more parameters than necessary.

In general, it’s impossible to know the
fewest amount of parameters that
could solve a problem.

PLAYING ATARI WITH S1x NEURONS

Giuseppe Cuccu Julian Togelius Philippe Cudré-Mauroux
eXascale Infolab Game Innovation Lab eXascale Infolab
Department of Computer Science Tandon School of Engineering Department of Computer Science
University of Fribourg, Switzerland New York University, NY, USA University of Fribourg, Switzerlar
name.surname@unifr.ch julian@togelius.com name . surname@unifr.ch
ABSTRACT

Deep reinforcement learning, applied to vision-based problems like Atari games, maps pixels directly to ac-
tions; internally, the deep neural network bears the responsibility of both extracting useful information and
making decisions based on it. By separating the image processing from decision-making, one could better
understand the complexity of each task, as well as potentially find smaller policy representations that are eas-
ier for humans to understand and may generalize better. To this end, we propose a new method for learning
policies and compact state representations separately but simultaneously for policy approximation in reinforce-
ment learning. State representations are generated by an encoder based on two novel algorithms: Increasing
Dictionary Vector Quantization makes the encoder capable of growing its dictionary size over time, to address
new observations as they appear in an open-ended online-learning context; Direct Residuals Sparse Coding
encodes observations by disregarding reconstruction error minimization, and aiming instead for highest infor-
mation inclusion. The encoder autonomously selects observations online to train on, in order to maximize code
sparsity. As the dictionary size increases, the encoder produces increasingly larger inputs for the neural net-
work: this is addressed by a variation of the Exponential Natural Evolution Strategies algorithm which adapts
its probability distribution dimensionality along the run. We test our system on a selection of Atari games using
tiny neural networks of only 6 to 18 neurons (depending on the game’s controls). These are still capable of
achieving results comparable—and occasionally superior—to state-of-the-art techniques which use two orders
of magnitude more neurons.



Overparameterization

PLAYING ATARI WITH S1x NEURONS

Giuseppe Cuccu Julian Togelius Philippe Cudré-Mauroux
eXascale Infolab Game Innovation Lab eXascale Infolab
Department of Computer Science Tandon School of Engineering Department of Computer Science
University of Fribourg, Switzerland New York University, NY, USA University of Fribourg, Switzerland
name.surname@unifr.ch julian@togelius.com name.surname@unifr.ch

ABSTRACT

) , Deep reinforcement learning, applied to vision-based problems like Atari games, maps pixels directly to ac-
(This paper doesn’t use SGD or tions; internally, the deep neural network bears the responsibility of both extracting useful information and
bac kprop, but another optimi zation making decisions based on it. By separating the image processing from decision-making, one could better
understand the complexity of each task, as well as potentially find smaller policy representations that are eas-

m ethod) ier for humans to understand and may generalize better. To this end, we propose a new method for learning
policies and compact state representations separately but simultaneously for policy approximation in reinforce-
ment learning. State representations are generated by an encoder based on two novel algorithms: Increasing
Dictionary Vector Quantization makes the encoder capable of growing its dictionary size over time, to address
new observations as they appear in an open-ended online-learning context; Direct Residuals Sparse Coding
encodes observations by disregarding reconstruction error minimization, and aiming instead for highest infor-
mation inclusion. The encoder autonomously selects observations online to train on, in order to maximize code
sparsity. As the dictionary size increases, the encoder produces increasingly larger inputs for the neural net-
work: this is addressed by a variation of the Exponential Natural Evolution Strategies algorithm which adapts
its probability distribution dimensionality along the run. We test our system on a selection of Atari games using
tiny neural networks of only 6 to 18 neurons (depending on the game’s controls). These are still capable of
achieving results comparable—and occasionally superior—to state-of-the-art techniques which use two orders
of magnitude more neurons.



(We will cover other techniques for managing
overfitting next week)

Overparameterization

Bias-Variance Tradeoff
(Traditional Understanding)

A Farewell to the Bias-Variance Tradeoff?
An Overview of the Theory of Overparameterized Machine Learning

Blag? Yehuda Dar* Vidya Muthukumar’ Richard G. Baraniuk*
Optimal solution
Total error
]
| ® Variance
!
i Abstract
Underfitting i Overfitting ‘ The rapid recent progress in machine learning (ML) has raised a number of scientific questions
zone 1 zone that challenge the longstanding dogma of the field. One of the most important riddles is the good

I [ empirical generalization of overparameterized models. Overparameterized models are excessively
| ) complex with respect to the size of the training dataset, which results in them perfectly fitting
(i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is
traditionally associated with detrimental overfitting, and yet a wide range of interpolating models
— from simple linear models to deep neural networks — have recently been observed to generalize
extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon
has revealed that highly overparameterized models often improve over the best underparameterized
model in test performance.

Understanding learning in this overparameterized regime requires new theory and foundational
Model Complexity empirical studies, even for the simplest case of the linear model. The underpinnings of this under-
standing have been laid in very recent analyses of overparameterized linear regression and related
statistical learning tasks, which resulted in precise analytic characterizations of double descent.

g o This paper provides a succinct overview of this emerging theory of overparameterized ML (hence-
If you are Overf Ittl ng’ red ucem Od el‘ com pleXIty forth abbreviated as TOPML) that explains these recent findings through a statistical signal pro-
0 ra cessing perspective. We emphasize the unique aspects that define the TOPML research area as a

(S ma lle F'wi dt h/fewer laye rs) ° If un d erflttl ng’ a d d subfield of modern ML theory and outline interesting open questions that remain.

more model complexity.

https://serokell.io/blog/bias-variance-tradeoff



Optimizers

* SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,... the list is ever growing

* How do you choose between them?

* Just use Adam.
* The only downside is that it might work so well that you end up overfitting.
* Suggested initial learning rate of 3e-4



Batch Size and Learning Rate

Having too small a batch or too high a learning rate can cause
variance in training/validation loss — symptoms often look similar

model accuracy Loss
0.875 ] — train 1.075 A —— train
test validation
0.850 1.050 7
0.825 1.025 4
> 0.800 4 ' 1.000 -
E I|l
g 0.775 1 0.975 -
2 |
0.750 1 0.950 -
0.725 0.925 4
0.700
0.900 A
0.675
T T T T T T T T T 0.875 _
0 25 50 75 100 125 150 175 200

epoch



General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking, /\
7/( come up with a hypothesis and test your hypothesis. 7/(
(Use the scientific method)

Andrej Karpathy: A recipe for training neural networks
https://karpathy.github.i0/2019/04/25/recipe/



https://karpathy.github.io/2019/04/25/recipe/

Recap




AutoML (If time)

Neural Architecture Search (NAS)

Changing hyperparameters results in different performance, can we
run an optimization algorithm on our hyperparameters?

Optimizer
Evolutionary al gorithm
Bayesian optimization
Reinforcement leaming
Gradient descent

------

generation
> )

Model
update

Bl

New Candidate
architecture architectures

D@ -
0

Performance evaluator

Training and validation .
Parameter shanng Perfo rmance
Surmogate model evaluation

oooooo

T LU ol
I;\.\| '_(\‘\_X _\_“|

adx By B

Pros:

No longer need
human input

May find better
hyperparameters
than humans

https://www.researchgate.net/publication/353166978_Action_Command_Encoding_for_Surrogate_Assisted_Neural_Architecture_Search

Cons:

- Takes avery long time...

- Hyperparameters are discrete
and highly dependent (e.g.,
width/depth), it’s a really hard
optimization problem...



AutoML (If time)

Option #1: Grid search

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try every combination of hyperparameters possible, pick setting
with best validation set performance.

What are some downsides of grid search?




AutoML (If time)

Option #2: Bayesian Optimization

We believe the performance of hyperparameters that are
close together, should have similar results.

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try sets of possible hyperparameters, each with some probability.

- The probability that you try a specific hyperparameter setting
depends on the performance of nearby hyperparameter settings.

- Also track uncertainty of hyperparameters (i.e., settings you have
not tried something close to before)



AutoML (If time)

Keras tuner is compatible with Tensorflow, Pytorch, and Jax and has
various automatic hyperparameter tuning methods

KerasTuner

C)star 2,871

KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain
points of hyperparameter search. Easily configure your search space with a define-by-run syntax,
then leverage one of the available search algorithms to find the best hyperparameter values for
your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search
algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment

with new search algorithms.



Looking Forward

Up until this point, we’ve covered Neural Networks generally
referred to as MLPs, feed forward networks, or networks made up of

“Linear Layers”
Up next: Convolutional Neural Networks

What happens if our inputimage is shifted?
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