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Day 7: More Gradients!



Final Project – A very brief overview

Option 1 (most people): Find an academic paper and implement it. 
If an implementation already exists in Tensorflow, you cannot use 
Tensorflow.

Option 2 (Capstones): More extensive project that goes beyond just 
re-implementing an existing paper (i.e., perform a research project).



Workshops and SRC Discussion Starting up!

Workshops this week:
- Introduction to Pytorch and Jax: Tensorflow isn't the only was to train a 

model! This workshop will show you how to use other common python 
libraries for deep learning, Pytorch and Jax. Whether you want to use one 
of these libraries for the final project, or you are interested to see other 
ways to implement deep learning this workshop is for you!

- How to read (and implement) Academic Papers: Unfamiliar codebases and 
academic papers can be pretty overwhelming. This workshop will teach 
you how to extract the most valuable information from both, and how to 
break down long passages into more understandable chunks. The skills 
gained in this workshop will equip you with more confidence at final 
project time as well as more comfort in the CS world at large!



Homework 2: Beras

• Releases Today
•  Conceptual due in 2 weeks (2/19)
• Programming due in 3 weeks (2/26)

• Coding Gradient Tape and Neural Networks with Numpy
• You must start early!



Recap

Backprop is used to compute gradients of 
a neural network efficiently

Gradients are used in Stochastic Gradient 
Descent to update NN parameters

SGD outperforms gradient descent 
in both speed and solution quality

Starting point

Gradient points in direction of increasing loss



Today’s Goals

(1) Classification and Backprop
(2) Intro to Autograd and Popular DL Frameworks



Binary Classification Review
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What is a reasonable loss function to use?

• Loss functions are what we try to optimize…
• In classification, we’d like the most accurate model…
• So let’s make our loss function negative accuracy!

For most small changes in weights, 
the output class is unaffected

No change in outputs → no change in 
loss → 0 gradient…

Have network output a number 
between 0 and 1 (i.e., use a sigmoid 

activation function). If output is >0.5, 
then predict 1, else 0

Gradients are the main motivation 
behind these types of decisions!
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What is a reasonable loss function to use?

• Accuracy is a “hard” function
• Hard to take meaningful derivatives of

• Other examples:
• Max vs. Softmax
• Ranking vs Softrank
• Sign function (i.e., perceptron activation) vs. Softsign
• Argmax

My (somewhat) old research
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Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Defined for two probability 
distributions, P and Q

Think of Q as what we predict and 
P as the ground truth Probabilities

When P(x) is high, Q(x) should 
also be high… (Log(1) = 0)
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One-Hot Vectors Revisited

Can be 
interpreted as a 

probability!
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Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

“Ground truth” Probability (i.e., 
label)

Predicted probabilities

P(x) is 1 if x is correct label, 0 
otherwise



Binary Cross Entropy

KL Divergence

Cross Entropy (CE)

𝐶𝐸 𝑦, ො𝑦 = −

𝑖

𝑛

𝑦𝑖 log ො𝑦𝑖



Binary Cross Entropy

KL Divergence

Cross Entropy (CE)

𝐶𝐸 𝑦, ො𝑦 = −

𝑖

𝑛

𝑦𝑖 log ො𝑦𝑖

”Categorical Cross Entropy”



Binary Cross Entropy

KL Divergence

Cross Entropy (CE)

𝐶𝐸 𝑦, ො𝑦 = −

𝑖

𝑛

𝑦𝑖 log ො𝑦𝑖

”Categorical Cross Entropy”

For Binary problems “Binary 
Cross Entropy” (BCE)
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Derivative of Cross Entropy

𝑑𝐿

𝑑 ො𝑦
= −

𝑑

𝑑 ො𝑦


𝑖

𝑛

𝑦𝑖 log ො𝑦𝑖

𝑑𝐿

𝑑 ො𝑦
= −

𝑖

𝑛

−
1

𝑝𝑖

Probability of predicting 
correct label for example i



Probabilities

• If we have probabilities, we can use Cross Entropy
• How do we get probabilities?

Option #1: Normalize outputs (i.e., 
divide by their total)

Option #2: Use another function 
(i.e., softmax)



Softmax Function

Source: https://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
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What’s the difference?

Consider a neural network with 2 outputs.
For one image, the network outputs [11, 12]. For a second image, 
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

Add 10 to each output

[0.26, 0.73] for [11, 12]
[0.00005, 0.99995] for [20, 30]

Exactly the same as [1, 2] and [10, 20]
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What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative 
changes

Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:
- Tends to handle smaller probabilities better (less float underflow)
- Remember that log in our loss function? Remember the 𝑒𝑧 in softmax? 

Our loss function becomes ~linear for our neuron outputs z
- Maybe has issues with overflow… (outputs can become inf or NaN)
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𝑎𝑖 =
𝑒𝑧𝑖

σ𝑘 𝑒
𝑧𝑘

Want to know: 𝑑𝑎
𝑑𝑧

What is 𝜕𝑎𝑖
𝜕𝑧𝑗

 ?



Derivative of Softmax

𝑎𝑖 =
𝑒𝑧𝑖

σ𝑘 𝑒
𝑧𝑘

Want to know: 𝑑𝑎
𝑑𝑧

What is 𝜕𝑎𝑖
𝜕𝑧𝑗

 ?

Quotient rule!



Derivative of Softmax

𝑎𝑖 =
𝑒𝑧𝑖

σ𝑘 𝑒
𝑧𝑘

Want to know: 𝑑𝑎
𝑑𝑧

What is 𝜕𝑎𝑖
𝜕𝑧𝑗

 ?

If 𝑖 == 𝑗, then 𝜕𝑎𝑖
𝜕𝑧𝑖

= 𝑎𝑖 ⋅ 1 − 𝑎𝑖

If 𝑖! = 𝑗, then 𝜕𝑎𝑖
𝜕𝑧𝑗

= −𝑎𝑖 ⋅ 𝑎𝑗
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A Full Classification Network
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Inputs are a 
matrix of n 
examples with 
d features

Hidden layer 
with m 
neurons will 
have a weight 
matrix of n x m

Softmax has m 
inputs and m 
outputs

Loss is a scalar 
value

X z a ො𝑦
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A Full Classification Network

Need: 𝑑𝐿
𝑑W

Inputs Hidden Layer Softmax Activation Loss (Cross Entropy)

𝑑𝐿

𝑑𝑎

𝑑𝑎

𝑑𝑧

𝑑𝑧

𝑑𝑊

What is this? (vector, scalar, 
matrix)

















Computation Graph

𝑒 = 𝑎 + 𝑏 ⋅ (𝑏 + 1)



Computation Graph and Derivatives

https://maucher.pages.mi.hdm-stuttgart.de/artificial-intelligence/00_Computational_Graphs.html



Tensorflow Gradient Tape

- Tensorflow will maintain a compute graph of operations 
performed within a Gradient Tape context

- Can automatically differentiate operations on request

- This is the purpose and usefulness of Deep Learning Frameworks!
- For the most part, you only have to specify the forward operations 

and TF (or Torch/Jax) will take care of the rest.



DL Frameworks

• Main current frameworks are Tensorflow, Pytorch, and Jax
• TF and torch are becoming increasingly similar in style and 

performance
• Jax is new and different

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
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Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will 

figure out how to use it)

- “Easier to deploy to production” (has been the general consensus 
previously, but other frameworks have caught up)

- TF lite for on device applications (e.g., phones)
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Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not. 

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware
• Harder to track stats

• (I still use TF’s tensorboard stat tracker when using Pytorch)
• Easier to learn and use than tensorflow

• Better error reporting, training code is harder to write but easier to debug
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Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster
• Takes advantage of Just In Time (JIT) compiling to speed up 

execution
• Best used with functional programming



Recap

What is this? (vector, scalar, matrix)
It matters!

DL frameworks maintain compute graphs and can 
differentiate composable functions automatically

Gradients Matter! We can’t use accuracy as a loss 
function because it has 0 gradient most places


	Slide 1
	Slide 2: Final Project – A very brief overview
	Slide 3: Workshops and SRC Discussion Starting up!
	Slide 4: Homework 2: Beras
	Slide 5: Recap
	Slide 6: Today’s Goals
	Slide 7: Binary Classification Review
	Slide 8: What is a reasonable loss function to use?
	Slide 9: What is a reasonable loss function to use?
	Slide 10: What is a reasonable loss function to use?
	Slide 11: What is a reasonable loss function to use?
	Slide 12: What is a reasonable loss function to use?
	Slide 13: What is a reasonable loss function to use?
	Slide 14: What is a reasonable loss function to use?
	Slide 15: What is a reasonable loss function to use?
	Slide 16: What is a reasonable loss function to use?
	Slide 17: What is a reasonable loss function to use?
	Slide 18: Kullback–Leibler divergence
	Slide 19: Kullback–Leibler divergence
	Slide 20: Kullback–Leibler divergence
	Slide 21: Kullback–Leibler divergence
	Slide 22: One-Hot Vectors Revisited
	Slide 23: One-Hot Vectors Revisited
	Slide 24: Kullback–Leibler divergence
	Slide 25: Kullback–Leibler divergence
	Slide 26: Kullback–Leibler divergence
	Slide 27: Kullback–Leibler divergence
	Slide 28: Binary Cross Entropy
	Slide 29: Binary Cross Entropy
	Slide 30: Binary Cross Entropy
	Slide 31: Derivative of Cross Entropy
	Slide 32: Derivative of Cross Entropy
	Slide 33: Derivative of Cross Entropy
	Slide 34: Derivative of Cross Entropy
	Slide 35: Derivative of Cross Entropy
	Slide 36: Probabilities
	Slide 37: Softmax Function
	Slide 38: What’s the difference?
	Slide 39: What’s the difference?
	Slide 40: What’s the difference?
	Slide 41: What’s the difference?
	Slide 42: What’s the difference?
	Slide 43: What’s the difference?
	Slide 44: What’s the difference?
	Slide 45: What’s the difference?
	Slide 46: What’s the difference?
	Slide 47: What’s the difference?
	Slide 48: What’s the difference?
	Slide 49: What’s the difference?
	Slide 50: What’s the difference?
	Slide 51: What’s the difference?
	Slide 52: What’s the difference?
	Slide 53: Derivative of Softmax
	Slide 54: Derivative of Softmax
	Slide 55: Derivative of Softmax
	Slide 56: Derivative of Softmax
	Slide 57: Derivative of Softmax
	Slide 58: Derivative of Softmax
	Slide 59: A Full Classification Network
	Slide 60: A Full Classification Network
	Slide 61: A Full Classification Network
	Slide 62: A Full Classification Network
	Slide 63: A Full Classification Network
	Slide 64: A Full Classification Network
	Slide 65: A Full Classification Network
	Slide 66: A Full Classification Network
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74: Computation Graph
	Slide 75: Computation Graph and Derivatives
	Slide 76: Tensorflow Gradient Tape
	Slide 77: DL Frameworks
	Slide 78: Tensorflow
	Slide 79: Tensorflow
	Slide 80: Tensorflow
	Slide 81: Tensorflow
	Slide 82: Tensorflow
	Slide 83: Pytorch
	Slide 84: Pytorch
	Slide 85: Pytorch
	Slide 86: Pytorch
	Slide 87: Pytorch
	Slide 88: Pytorch
	Slide 89: Pytorch
	Slide 90: Pytorch
	Slide 91: Jax
	Slide 92: Jax
	Slide 93: Jax
	Slide 94: Jax
	Slide 95: Jax
	Slide 96: Jax
	Slide 97: Recap

