
Deep Learning

Eric Ewing

CSCI 1470

Friday,
1/31/25

Day 5: MLPs and Optimization

Review

Perceptrons used for binary classification.

Want to perform multi-class classification?

Want to learn more complex functions?

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1
𝑤2
𝑤3
𝑤4

∑

𝑏

𝑤5
𝑤6
𝑤7
𝑤8

∑

𝑏 𝑤5

𝑤5
∑

𝑏

OutputMultiple Layers

Multiple Perceptrons sharing inputs

Today’s Goals

Introduction to the theory of neural networks
(1) Universal Approximation Theory
(2) How do we train Neural Networks?

Multi-Class Classification

Multi-class classification with
“perceptrons”
Need to remove threshold function
from outputs

Why?

MLPs
Hidden Layers

Input Features Outputs

Multi-Layer Perceptrons

What happens if we remove the
threshold activations from a
multi-layer perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(1) = [𝑤1, 𝑤2, 𝑤3, 𝑤4]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Multi-Layer Perceptrons

What happens if we remove the
activations from a multi-layer
perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Multi-Layer Perceptrons

What happens if we remove the
activations from a multi-layer
perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Perceptron #3: 𝑧3 = 𝑧1𝑤9 + 𝑧2𝑤10 + 𝑏3

Multi-Layer Perceptrons

What happens if we remove the
activations from a multi-layer
perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Perceptron #3: 𝑧3 = 𝑧1𝑤9 + 𝑧2𝑤10 + 𝑏3

Entire Network:
𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

Multi-Layer Perceptrons

What happens if we remove the
activations from a multi-layer
perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Perceptron #3: 𝑧3 = 𝑧1𝑤9 + 𝑧2𝑤10 + 𝑏3

Entire Network:
𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

MLP’s Expressiveness

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector…

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector…

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector… Just a vector…

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector… Just a vector…

𝑧 = 𝑥𝑇𝑤 + 𝑏

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector… Just a vector…

𝑧 = 𝑥𝑇𝑤 + 𝑏

With no activation function

Multi-Layer Perceptrons without non-
linear activation functions are linear

functions

Activation Functions

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

OutputActivation

Non-linear functions
applied to output of

neuron

Activation Functions

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

OutputActivation

Non-linear functions
applied to output of

neuron

In the perceptron case,
the activation function

is the threshold

Activation Functions

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

OutputActivation

Non-linear functions
applied to output of

neuron

In the perceptron case,
the activation function

is the threshold

Common Activation Functions

Common Activation Functions

Common Activation Functions
Rectified Linear Unit (ReLU):

One of the most common Activation Functions
Advantages: Simple, easy to compute gradients

Common Activation Functions

Common Activation Functions
Leaky ReLU:

Common substitute for ReLU, often has better performance
Advantages: Fixes “dying neurons” issue with ReLU.

Tanh

Tanh

Tanh:
Advantages:
- Always maps output between -1 and 1 (learning

is easier when input is normalized and this holds
for intermediate layers as well)

- Continuously differentiable
Disadvantages:
- Slower to compute
- Extreme differences in input to activation can

get squashed (i.e., z=100 will be very close to
z=10000)

Tanh

Tanh:
Advantages:
- Always maps output between -1 and 1 (learning

is easier when input is normalized and this holds
for intermediate layers as well)

- Continuously differentiable
Disadvantages:
- Slower to compute
- Extreme differences in input to activation can

get squashed (i.e., z=100 will be very close to
z=10000)

Special Activation Functions for Output

Special Activation Functions for Output
Sigmoid maps input to [0, 1]
Softmax maps vector of inputs to probabilities (outputs sum to 1)

Special Activation Functions for Output
Sigmoid maps input to [0, 1]
Softmax maps vector of inputs to probabilities (outputs sum to 1)

Used for classification tasks

MLPs With Activation Functions

We almost never draw
activation functions in our
neural network diagrams,
but they must always be
there!

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

Output

Source: IBM

Source: Me

Source: Wikipedia
Source: 3B1B

Neural Networks

Neural Networks

• Without non-linear activation functions, a neural network is just a
Linear Regression.

Neural Networks

• Without non-linear activation functions, a neural network is just a
Linear Regression.

• With non-linear activation functions, a neural network is a
universal function approximator.

Neural Networks

• Without non-linear activation functions, a neural network is just a
Linear Regression.

• With non-linear activation functions, a neural network is a
universal function approximator.
• For any function, there exists a neural network of fixed depth that can

approximate within some 𝜖 of error.

Neural Networks

• Without non-linear activation functions, a neural network is just a
Linear Regression.

• With non-linear activation functions, a neural network is a
universal function approximator.
• For any function, there exists a neural network of fixed depth that can

approximate within some 𝜖 of error.
• If 𝜖 = 0, i.e., we want a perfect approximation, we may need an infinitely

wide network.

Neural Networks

• Without non-linear activation functions, a neural network is just a
Linear Regression.

• With non-linear activation functions, a neural network is a
universal function approximator.
• For any function, there exists a neural network of fixed depth that can

approximate within some 𝜖 of error.
• If 𝜖 = 0, i.e., we want a perfect approximation, we may need an infinitely

wide network.
• This is an existence theorem, meaning it tells you that a neural network

exists with these properties. It does not tell you how to find the weights of
this network.

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%

accuracy

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%

accuracy

Piecewise polynomials are
universal function approximators

(think Taylor expansions)

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%

accuracy

Piecewise polynomials are
universal function approximators

(think Taylor expansions)

Wavelets (i.e., small pieces of
sine and cosine) are universal

function approximators

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%

accuracy

Piecewise polynomials are
universal function approximators

(think Taylor expansions)

Wavelets (i.e., small pieces of
sine and cosine) are universal

function approximators

This theorem explains why neural
networks are good at fitting the
training dataset, not why they

perform well on the test dataset.

Optimization

Learning Network Parameters

How do we find
good parameters?

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters Worked for Linear Regressions!

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters Worked for Linear Regressions!

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters Worked for Linear Regressions!

Only had one point where ∇ f𝜃= 0 and that point
was a global optimum.

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters Worked for Linear Regressions!

Only had one point where ∇ f𝜃= 0 and that point
was a global optimum.

MSE is convex with respect to the parameters of
the linear Regression

Convexity

Picture Source: Andrew Ng

Formally:
- For any two points 𝑥1, 𝑥2 and 𝜆 ∈ [0, 1]
- 𝜆𝑓 𝑥1 + 1 − 𝜆 𝑓 𝑥2 ≤ 𝜆𝑥1 + 1 − 𝜆 𝑥2

The line connecting any two
points on the graph will
always be above the function.

For convex functions, finding a point
with ∇𝑓 = 0 is sufficient for knowing
the point is a global minimum

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Multiple local minima

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Multiple local minima

Local maxima

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Multiple local minima
Saddle points

Local maxima

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Multiple local minima
Saddle points

Local maxima

If ReLU or other piecewise
activation function is used, may
need 2𝑛 piecewise functions to
write out ∇𝑓𝜃…

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

Vector Calculus

Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with
respect to one of its inputs

Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with
respect to one of its inputs

• Example: 𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with
respect to one of its inputs

• Example: 𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

• The partial derivative with respect to w is 𝜕𝑓

𝜕𝑤

Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with
respect to one of its inputs

• Example: 𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

• The partial derivative with respect to w is 𝜕𝑓

𝜕𝑤

• How to compute: Treat all other variables as constants and
differentiate with respect to that variable

𝜕𝑓

𝜕𝑤
=

𝜕

𝜕𝑤
𝑤𝑥 + 𝑏 =

𝜕

𝜕𝑤
𝑤𝑥 +

𝜕

𝜕𝑤
𝑏 = 𝑥

Gradients

Gradient: the vector of partial derivatives

Vector “points” in direction of increasing f values.

∇𝑓 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
, …]

𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

∇𝑓𝜃 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
,
𝜕𝑓

𝜕𝑥
]

Gradients

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Why is this negative?

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Why is this negative?
Wait, this isn’t even the best 𝜃

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Why do we need a learning rate?

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Why do we need a learning rate?

Derivatives/Gradients only hold locally

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Understanding gradient descent is the single most
important concept in all of Deep Learning. Most decisions

in DL are made for reasons related to gradients.

Review: Mean Squared Error

Used previously for linear regression:

𝑀𝑆𝐸 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

Used for regression tasks (prediction of continuous variable)

Model with parameters 𝜃

Gradients

Gradients

Gradient descent needs gradients, how do we actually calculate them?

Gradients

Gradient descent needs gradients, how do we actually calculate them?

𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

Gradients

Gradient descent needs gradients, how do we actually calculate them?

𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

𝐿 =
∑𝑖

𝑛[𝑦𝑖
2−2𝑓𝜃 Ԧ𝑥 + 𝑓𝜃 Ԧ𝑥 2]

𝑛

Gradients

Gradient descent needs gradients, how do we actually calculate them?

𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

𝐿 =
∑𝑖

𝑛[𝑦𝑖
2−2𝑓𝜃 Ԧ𝑥 + 𝑓𝜃 Ԧ𝑥 2]

𝑛

∇𝜃𝐿 =
∑𝑖

𝑛 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 + 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 ⋅ 𝑓𝜃(Ԧ𝑥)]

𝑛

Gradients

Gradient descent needs gradients, how do we actually calculate them?

𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

𝐿 =
∑𝑖

𝑛[𝑦𝑖
2−2𝑓𝜃 Ԧ𝑥 + 𝑓𝜃 Ԧ𝑥 2]

𝑛

∇𝜃𝐿 =
∑𝑖

𝑛 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 + 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 ⋅ 𝑓𝜃(Ԧ𝑥)]

𝑛

But what is this?

Gradients

Gradient descent needs gradients, how do we actually calculate them?

𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

𝐿 =
∑𝑖

𝑛[𝑦𝑖
2−2𝑓𝜃 Ԧ𝑥 + 𝑓𝜃 Ԧ𝑥 2]

𝑛

∇𝜃𝐿 =
∑𝑖

𝑛 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 + 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 ⋅ 𝑓𝜃(Ԧ𝑥)]

𝑛

But what is this? 𝑓𝜃 = 𝑤𝑥 + 𝑏
For a single output

Weight Matrix

• We have an input of size n and we want an output vector of size m.
• We will represent our weights as a matrix.

• What should the dimensions of our matrix be?

n inputs
m inputs

Weight Matrix

• We have an input of size n and we want an output vector of size m.
• We will represent our weights as a matrix.

• What should the dimensions of our matrix be?

n inputs
m inputs

Classification

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

We cannot use classification as a loss
function because it is incompatible with

gradient descent

Remaining Questions for next week:
1) What loss function can we use for classification?
2) How do we actually calculate the gradient of a network?

1) If the loss function is applied to the whole dataset, shouldn’t we be
concerned about the size of the dataset?

2) Gradient descent is an iterative approach. If each iteration is slow, the
whole algorithm will take too long to finish.

3) Gradient descent can get stuck in local minima.
 Can we do better?

Recap

Building a Neural Network

Non-linear Activation Functions

Hidden layers of neurons

Loss Function

Chain rule for backprop

	Slide 1
	Slide 2: Review
	Slide 3: Today’s Goals
	Slide 4: Multi-Class Classification
	Slide 5: MLPs
	Slide 6: Multi-Layer Perceptrons
	Slide 7: Multi-Layer Perceptrons
	Slide 8: Multi-Layer Perceptrons
	Slide 9: Multi-Layer Perceptrons
	Slide 10: Multi-Layer Perceptrons
	Slide 11: MLP’s Expressiveness
	Slide 12: MLP’s Expressiveness
	Slide 13: MLP’s Expressiveness
	Slide 14: MLP’s Expressiveness
	Slide 15: MLP’s Expressiveness
	Slide 16: MLP’s Expressiveness
	Slide 17: MLP’s Expressiveness
	Slide 18: MLP’s Expressiveness
	Slide 19: MLP’s Expressiveness
	Slide 20: MLP’s Expressiveness
	Slide 21: Activation Functions
	Slide 22: Activation Functions
	Slide 23: Activation Functions
	Slide 24: Common Activation Functions
	Slide 25: Common Activation Functions
	Slide 26: Common Activation Functions
	Slide 27: Common Activation Functions
	Slide 28: Common Activation Functions
	Slide 29: Tanh
	Slide 30: Tanh
	Slide 31: Tanh
	Slide 32: Special Activation Functions for Output
	Slide 33: Special Activation Functions for Output
	Slide 34: Special Activation Functions for Output
	Slide 35: MLPs With Activation Functions
	Slide 36: Neural Networks
	Slide 37: Neural Networks
	Slide 38: Neural Networks
	Slide 39: Neural Networks
	Slide 40: Neural Networks
	Slide 41: Neural Networks
	Slide 42: Neural Networks
	Slide 43: Neural Networks
	Slide 44: Neural Networks
	Slide 45: Neural Networks
	Slide 46: Neural Networks
	Slide 47: Neural Networks
	Slide 48: Optimization
	Slide 49: Learning Network Parameters
	Slide 50: Option 1: Closed Form Solution
	Slide 51: Option 1: Closed Form Solution
	Slide 52: Option 1: Closed Form Solution
	Slide 53: Option 1: Closed Form Solution
	Slide 54: Option 1: Closed Form Solution
	Slide 55: Option 1: Closed Form Solution
	Slide 56: Convexity
	Slide 57: Non-Convex Functions
	Slide 58: Non-Convex Functions
	Slide 59: Non-Convex Functions
	Slide 60: Non-Convex Functions
	Slide 61: Non-Convex Functions
	Slide 62: Option 2: Gradient Descent
	Slide 63: Option 2: Gradient Descent
	Slide 64: Option 2: Gradient Descent
	Slide 65: Option 2: Gradient Descent
	Slide 66: Option 2: Gradient Descent
	Slide 67: Option 2: Gradient Descent
	Slide 68: Option 2: Gradient Descent
	Slide 69: Vector Calculus
	Slide 70: Vector Calculus
	Slide 71: Vector Calculus
	Slide 72: Vector Calculus
	Slide 73: Vector Calculus
	Slide 74: Gradients
	Slide 75: Gradients
	Slide 76: Option 2: Gradient Descent
	Slide 77: Option 2: Gradient Descent
	Slide 78: Option 2: Gradient Descent
	Slide 79: Option 2: Gradient Descent
	Slide 80: Option 2: Gradient Descent
	Slide 81: Option 2: Gradient Descent
	Slide 82: Option 2: Gradient Descent
	Slide 83: Option 2: Gradient Descent
	Slide 84: Option 2: Gradient Descent
	Slide 85: Review: Mean Squared Error
	Slide 86: Gradients
	Slide 87: Gradients
	Slide 88: Gradients
	Slide 89: Gradients
	Slide 90: Gradients
	Slide 91: Gradients
	Slide 92: Gradients
	Slide 93: Weight Matrix
	Slide 94: Weight Matrix
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100: Classification
	Slide 101: Classification
	Slide 102: Classification
	Slide 103: Classification
	Slide 104: Classification
	Slide 105: Classification
	Slide 106: Classification
	Slide 107
	Slide 108: Recap

