
Deep Learning

Eric Ewing

CSCI 1470

Friday,
1/31/25

Day 5: MLPs and Optimization



Review

Perceptrons used for binary classification.

Want to perform multi-class classification?

Want to learn more complex functions?
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Today’s Goals

Introduction to the theory of neural networks
(1) Universal Approximation Theory
(2) How do we train Neural Networks?



Multi-Class Classification

Multi-class classification with 
“perceptrons”
Need to remove threshold function 
from outputs

Why?



MLPs
Hidden Layers

Input Features Outputs



Multi-Layer Perceptrons
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MLP’s Expressiveness
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Just a vector… Just a vector…

𝑧 = 𝑥𝑇𝑤 + 𝑏

*With no activation function*

Multi-Layer Perceptrons without non-
linear activation functions are linear 

functions
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Common Activation Functions
Rectified Linear Unit (ReLU):

One of the most common Activation Functions
Advantages: Simple, easy to compute gradients
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Common Activation Functions
Leaky ReLU:

Common substitute for ReLU, often has better performance
Advantages: Fixes “dying neurons” issue with ReLU.
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Tanh:
Advantages: 
- Always maps output between -1 and 1 (learning 

is easier when input is normalized and this holds 
for intermediate layers as well)

- Continuously differentiable
Disadvantages:
- Slower to compute
- Extreme differences in input to activation can 

get squashed (i.e., z=100 will be very close to 
z=10000)
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Special Activation Functions for Output
Sigmoid maps input to [0, 1]
Softmax maps vector of inputs to probabilities (outputs sum to 1)

Used for classification tasks



MLPs With Activation Functions

We almost never draw 
activation functions in our 
neural network diagrams, 
but they must always be 
there!
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Neural Networks



Neural Networks

• Without non-linear activation functions, a neural network is just a 
Linear Regression.



Neural Networks

• Without non-linear activation functions, a neural network is just a 
Linear Regression.

• With non-linear activation functions, a neural network is a 
universal function approximator.



Neural Networks

• Without non-linear activation functions, a neural network is just a 
Linear Regression.

• With non-linear activation functions, a neural network is a 
universal function approximator.
• For any function, there exists a neural network of fixed depth that can 

approximate within some 𝜖 of error.



Neural Networks

• Without non-linear activation functions, a neural network is just a 
Linear Regression.

• With non-linear activation functions, a neural network is a 
universal function approximator.
• For any function, there exists a neural network of fixed depth that can 

approximate within some 𝜖 of error.
• If 𝜖 = 0, i.e., we want a perfect approximation, we may need an infinitely 

wide network.



Neural Networks

• Without non-linear activation functions, a neural network is just a 
Linear Regression.

• With non-linear activation functions, a neural network is a 
universal function approximator.
• For any function, there exists a neural network of fixed depth that can 

approximate within some 𝜖 of error.
• If 𝜖 = 0, i.e., we want a perfect approximation, we may need an infinitely 

wide network.
• This is an existence theorem, meaning it tells you that a neural network 

exists with these properties. It does not tell you how to find the weights of 
this network.
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Neural Networks

• So that’s it, right? That’s why deep learning is so successful. 
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth 
can fit any function with 100% 

accuracy

Piecewise polynomials are 
universal function approximators 

(think Taylor expansions)

Wavelets (i.e., small pieces of 
sine and cosine) are universal 

function approximators

This theorem explains why neural 
networks are good at fitting the 
training dataset, not why they 

perform well on the test dataset.



Optimization



Learning Network Parameters

How do we find 
good parameters?
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Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters Worked for Linear Regressions!

Only had one point where ∇ f𝜃= 0 and that point 
was a global optimum.

MSE is convex with respect to the parameters of 
the linear Regression



Convexity

Picture Source: Andrew Ng

Formally: 
- For any two points 𝑥1, 𝑥2 and 𝜆 ∈ [0, 1]
- 𝜆𝑓 𝑥1 + 1 − 𝜆 𝑓 𝑥2 ≤ 𝜆𝑥1 + 1 − 𝜆 𝑥2

The line connecting any two 
points on the graph will 
always be above the function.

For convex functions, finding a point 
with ∇𝑓 = 0 is sufficient for knowing 
the point is a global minimum
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Non-Convex Functions
MSE is not convex with respect to network parameters 
when non-linear activations are involved. 

𝑤1

𝑤2

Multiple local minima
Saddle points

Local maxima

If ReLU or other piecewise 
activation function is used, may 
need 2𝑛 piecewise functions to 
write out ∇𝑓𝜃…
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Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with 
respect to one of its inputs

• Example: 𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

• The partial derivative with respect to w is 𝜕𝑓

𝜕𝑤

• How to compute: Treat all other variables as constants and 
differentiate with respect to that variable

𝜕𝑓

𝜕𝑤
=

𝜕

𝜕𝑤
𝑤𝑥 + 𝑏 =

𝜕

𝜕𝑤
𝑤𝑥 +

𝜕

𝜕𝑤
𝑏 = 𝑥



Gradients

Gradient: the vector of partial derivatives

Vector “points” in direction of increasing f  values.

∇𝑓 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
, … ]

𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

∇𝑓𝜃 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
,
𝜕𝑓

𝜕𝑥
]
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Option 2: Gradient Descent

1. Start with some initial set of parameters
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Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the 

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in 
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Understanding gradient descent is the single most 
important concept in all of Deep Learning. Most decisions 

in DL are made for reasons related to gradients.



Review: Mean Squared Error

Used previously for linear regression:

𝑀𝑆𝐸 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃( Ԧ𝑥))^2

𝑛

Used for regression tasks (prediction of continuous variable)

Model with parameters 𝜃
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Gradients

Gradient descent needs gradients, how do we actually calculate them?

𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃( Ԧ𝑥))^2

𝑛

𝐿 =
∑𝑖

𝑛[𝑦𝑖
2−2𝑓𝜃 Ԧ𝑥 + 𝑓𝜃 Ԧ𝑥 2]

𝑛

∇𝜃𝐿 =
∑𝑖

𝑛 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 + 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 ⋅ 𝑓𝜃( Ԧ𝑥)]

𝑛

But what is this? 𝑓𝜃 = 𝑤𝑥 + 𝑏
For a single output
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• We will represent our weights as a matrix.

• What should the dimensions of our matrix be?

n inputs
m inputs
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Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
# 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

We cannot use classification as a loss 
function because it is incompatible with 

gradient descent



Remaining Questions for next week:
1) What loss function can we use for classification?
2) How do we actually calculate the gradient of a network?

1) If the loss function is applied to the whole dataset, shouldn’t we be 
concerned about the size of the dataset?

2) Gradient descent is an iterative approach. If each iteration is slow, the 
whole algorithm will take too long  to finish. 

3) Gradient descent can get stuck in local minima. 
 Can we do better?



Recap

Building a Neural Network

Non-linear Activation Functions

Hidden layers of neurons

Loss Function

Chain rule for backprop
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