CSCI 1470

Eric Ewing

Wednesday, 1/29/25

Deep Learning

0 0

0.0

100

Day 4: MNIST, Perceptrons, and MLPs

Todays Goals

- (1) Review Perceptrons and Apply to MNIST
- (2) How do we train perceptrons?
- (3) What are Perceptrons strengths and weaknesses?
- (4) Multi-Layer Perceptrons (aka Neural Networks)

What would it mean for a weight to be 0?

What would it mean for a weight to be 0?

What would it mean for a weight to be very positive?

What would it mean for a weight to be 0?

What would it mean for a weight to be very positive?

What would it mean for a weight to be very negative?

What would it mean for a weight to be 0?

What would it mean for a weight to be very positive?

What would it mean for a weight to be very negative?

Input features should be in the same range! (e.g., should be between 0 and 1)

What would it mean for a weight to be 0?

What would it mean for a weight to be very positive?

What would it mean for a weight to be very negative?

How Strong are Linear Separators?

Image courtesy of: https://vitalflux.com/how-know-data-linear-non-linear/

MNIST

The most famous dataset in Deep Learning

Modified National Institute of Standards and Technology database

Image courtesy of Wikipedia

Motivation: Zip Code Recognition

- In 1990s, great increase in documents on paper (mail, checks, books, etc.)
- Motivation for a ZIP code recognizer on real U.S. mail for the postal service!

80322-4129 80206 40004 (4310 27878 <u>05753</u> .55502 75576 35460: AJQ09

Our Problem:

Input: X Target: Y 3^{*} $f(X) \rightarrow Y$ Target: Y Which digit is it? 3^{*}

Representing digits in the computer

 Numbers known as *pixel values* (a grid of discrete values that make up an image)

0 is white, 255 is black, and numbers in between are shades of gray

157	153	174	168	150	152	129	151	172	161	155	156	157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154	155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181	180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180	206	109	5	124	131	111	120	204	166	16	56	180
194	68	137	251	237	239	239	228	227	87		201	194	68	137	251	237	239	239	228	227	87	п	201
172	105	207	233	233	214	220	239	228	98	74	206	172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169	188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148	189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190	199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234	205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241	190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	35	101	255	224	190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215	190	214	173	66	103	143	96	50	2	109	249	216
187	196	235	75	٦	81	47	٥	6	217	255	211	187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	•	0	12	108	200	138	243	236	183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218	195	206	123	207	177	121	123	200	175	13	96	218
																							-

• Pixel in position [15, 15] is light.

what the computer sees

Center is typically empty for 0's. How does this compare with 3's?

255	255	255	255	255	253	254	245	255
255	255	251	255	255	255	254	235	252
255	252	255	250	255	245	255	253	234
253	255	255	255	251	254	255	255	235
255	255	252	255	249	255	239	243	255
255	250	255	235	255	255	257	244	255
255	255	255	245	233	255	254	255	234
233	255	255	255	247	255	233	235	244
249	255	200	255	200	200	249	243	239
255	255	255	250	255	254	251	243	251
245	240	244	240	239	244	255	244	248
242	128	140	150	130	128	110	245	246
240	240	4	5	4	3	2	118	120
240	5	4	2	0	0	0	4	2
0	0	0	0	0	0	0	0	0

Darker pixels in the middle

255	255	255	255	255	253	254	245	255
255	255	251	255	255	255	254	235	252
255	252	255	250	255	245	255	253	234
253	255	255	255	251	254	255	255	235
255	255	252	255	249	255	239	243	255
255	250	255	245	255	255	254	244	254
255	255	255	255	249	255	255	255	244
249	255	253	255	233	255	249	245	239
255	255	255	250	255	254	251	243	251
245	240	244	240	239	244	255	244	248
242	128	140	150	130	128	110	245	246
240	240	4	5	4	3	2	118	120
240	5	4	2	0	0	0	4	2
0	0	0	0	0	0	0	0	0

Darker pixels in the middle

	255	255	255	255	255	253	254	245	255
	255	255	251	255	255	255	254	235	252
	255	252	255	250	255	245	255	253	234
	253	255	255	255	251	254	255	255	235
	255	255	252	255	249	255	239	243	255
	255	250	255	245	255	255	254	244	254
	255	255	255	255	249	255	255	255	244
	249	255	253	255	233	255	249	245	239
	255	255	255	250	255	254	251	243	251
	235	233	233	240	233	234	255	244	248
	243	170	140	150	120	170	110	245	240
	242	240	140	130	150	120	2	110	120
	240	240	4	5	4	3	2	110	120
	240	5	4	2	0	0	0	4	2
	0	0	0	0	0	0	0	0	0
Can v	ve de	fine	a set	of he	uristic	s (i.e.	rules l	based	on oi

intuition), to classify digits?

Machine Learning Pipeline for Digit Recognition

Train, validation, and test sets

- Training Set: Used to adjust parameters of model
- Validation set used to test how well we're doing as we develop
 - Prevents *overfitting*
- Test Set used to evaluate the model once the model is done

MNIST

- 60,000 Images in training set
- 10,000 Images in test set
- No explicit validation set

MNIST

- 60,000 Images in training set
- 10,000 Images in test set
- No explicit validation set

What do you suggest we do?

Machine Learning Pipeline for Digit Recognition

Our simplified problem:

Loop Over Dataset (until no weights change)

- For each misclassified example
 - update weights to make better prediction for example

- 1. Initialize $\vec{\theta} = \vec{0}$
- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$
 - 1. If $y^{(k)} = f(x^{(k)})$, continue
 - 2. Else, for all parameters $\theta_i \in \vec{\theta}$, $\theta_i = \theta_i + (y^{(k)} f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

1. Initialize $\vec{\theta} = \vec{0}$

Need to start somewhere... any initial setting will work

- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$
 - 1. If $y^{(k)} = f(x^{(k)})$, continue
 - 2. Else, for all parameters $\theta_i \in \vec{\theta}$, $\theta_i = \theta_i + (y^{(k)} f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

1. Initialize $\vec{\theta} = \vec{0}$

N is referred to as **"epochs":** Number of times the entire dataset is iterated through

- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$
 - 1. If $y^{(k)} = f(x^{(k)})$, continue
 - 2. Else, for all parameters $\theta_i \in \vec{\theta}$, $\theta_i = \theta_i + (y^{(k)} f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

- 1. Initialize $\vec{\theta} = \vec{0}$
- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$

1. If
$$y^{(k)} = f(x^{(k)})$$
, continue

Loop over every example in dataset

2. Else, for all parameters
$$\theta_i \in \vec{\theta}$$
, $\theta_i = \theta_i + (y^{(k)} - f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

- 1. Initialize $\vec{\theta} = \vec{0}$
- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$ 1. If $y^{(k)} = f(x^{(k)})$, continue Look only at examples that are misclassified (i.e., $y^{(k)} \neq f(x^{(k)})$)

2. Else, for all parameters
$$\theta_i \in \vec{\theta}$$
, $\theta_i = \theta_i + (y - f(x - f(x - f)) \cdot x_i)$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

1. Initialize $\vec{\theta} = \vec{0}$

For every parameter in our perceptron...

- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$

1. If $y^{(k)} = f(x^{(k)})$, continue

2. Else, for all parameters
$$\theta_i \in \vec{\theta} \ \theta_i = \theta_i + (y^{(k)} - f(x^{(k)})) \cdot x_i^{(k)}$$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

1. Initialize $\vec{\theta} = \vec{0}$

For every parameter in our perceptron...

- 2. For N iterations or until $\vec{\theta}$ does not chang $\lim_{x \to 0} y^{(k)} = 1$ and $f(x^{(k)}) = 0$ and $x_i^{(k)} > 0$...
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$

1. If
$$y^{(k)} = f(x^{(k)})$$
, continue

2. Else, for all parameters
$$\theta_i \in \vec{\theta}$$
, $\theta_i = \theta_i + (y^{(k)} - f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

1. Initialize $\vec{\theta} = \vec{0}$

For every parameter in our perceptron...

 θ_i increases

- 2. For N iterations or until $\vec{\theta}$ does not chang $\lim_{x \to 0} y^{(k)} = 1$ and $f(x^{(k)}) = 0$ and $x_i^{(k)} > 0$...
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$

1. If
$$y^{(k)} = f(x^{(k)})$$
, continue

(k), continue

2. Else, for all parameters $\theta_i \in \vec{\theta} \ \theta_i = \theta_i + (y^{(k)} - f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

1. Initialize $\vec{\theta} = \vec{0}$ 2. For N iterations or until $\vec{\theta}$ does not change 1. For each example $x^{(k)}$ with label $y^{(k)}$ 1. If $y^{(k)} = f(x^{(k)})$, continue 2. Else, for all parameters $\theta_i \in \vec{\theta}$, $\theta_i = \theta_i + (y^{(k)} - f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

Converting Perceptrons to Multi-Class Classification

Using Multiple Perceptrons

- We can use *m* perceptrons (where *m* is the number of output classes)
- For MNIST, this would be 10 perceptrons
- Each individual perceptron will need to return a value, our model will return the class with the highest value
 - Here, value refers to the weighted sum before the threshold is applied

Using multiple perceptrons

Multi-class Perceptron

Three perceptrons sharing inputs

So how well does this do?

Perceptrons achieve ~85% accuracy on MNIST

Is this good?

So how well does this do?

Perceptrons achieve ~85% accuracy on MNIST

Is this good?

Can be coded in ~20 minutes, probably achieves better accuracy than whatever else you can do in ~20 minutes...

So how well does this do?

Perceptrons achieve ~85% accuracy on MNIST

Is this good?

Can be coded in ~20 minutes, probably achieves better accuracy than whatever else you can do in ~20 minutes...

But 85% is not good enough for the post office

Perceptrons

Are Perceptrons guaranteed to achieve 100% accuracy?

How can you put a linear separator on the plot to separate the two classes?

 \times

XOR Function

How can you put a linear separator on the plot to separate the two classes?

How can you put a linear separator on the plot to separate the two classes?

There are simple functions that perceptrons can't learn!

The Solution:

Multi-Layer Perceptron (MLP, Neural Network)

Perceptron

Perceptrons: Marvin Minsky and Seymor Papert

- Published in 1969 and very pessimistic of "connectionism"
- Limited funding for neural networks research in the 1970s
 - (First AI winter)
- 1980s revival of neural networks research
 - "Invention" of backpropagation, needed for efficient training of neural networks
- 1987 collapse of LISP machine market and abandonment of expert systems
 - (Second Al winter)

Remaining Questions (for next time)

- We trained perceptrons with a special algorithm for binary classification. How does that change when we have multiple outputs or multiple layers?
- Multi-layer perceptrons can achieve better performance on MNIST and can work with non-linear separable data. Is there anything they can't learn?

Recap

First weekly quiz is up on Gradescope (as of 12:40pm), and due in 24 hours (1pm Thursday)

MNIST image data is a testbed for multiclass classification

Perceptrons have binary outputs (0 or 1), how do we do multi-class classification?

Perceptrons can only correctly classify linearly separable data, how can we learn more complex functions? With a different perceptron output for each class! (and using continuous output value not binary)

Using multi-layer perceptrons (MLPs)!