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Recap

J—

| Matrix and Vector Notation
Linear Regression —<<

| Closed Form solution for finding optimal parameters

@\

N
Z > 0 | natural extension of linear models to binary classification tasks
@——;ﬂi utput

| Biological inspiration of activation threshold |
e

Perceptrons

terms of activation function

Only differ from Linear Regression in ‘




Todays Goals

(1) Review Perceptrons and Apply to MNIST

(2) How do we train perceptrons?

(3) What are Perceptrons strengths and weaknesses?
(4) Multi-Layer Perceptrons (aka Neural Networks)



Understanding Perceptron Weights
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Understanding Perceptron Weights

What would it mean for a
weight to be 07?

What would it mean for a
weight to be very positive?

What would it mean for a
weight to be very negative?

0006

— Output

Input features should be in
the same range! (e.g.,

_ should be between 0 and 1) _



Understanding Perceptron Weights

What would it mean for a
weight to be 07?

What would it mean for a
weight to be very positive?

What would it mean for a
weight to be very negative?

— Output

PP

Any questions?




How Strong are Linear Separators?

Linearly separable Not linearly separable
A linear decision boundary that No linear decision boundary that separates
separates the two classes exists Nonlinear the two classes perfectly exists
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Image courtesy of: https://vitalflux.com/how-know-data-linear-non-linear/



MNIST

The most famous dataset in Deep Learning
Modified National Institute of Standards and Technology database
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Motivation: Zip Code Recognition

* [n 1990s, great increase in documents on paper
(mail, checks, books, etc.)

* Motivation for a ZIP code recognizer on real U.S. mail for the postal

service!
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http://yann.lecun.com/exdb/publis/pdf/matan-92.pdf



Our Problem:

Input: X Target: Y

Which digitis it?

3 =) Function: f ™= 3

f(X)> Y|




How does a computer know this is
a three?

v

“three”




Representing digits in the computer

* Numbers known as pixel values (a grid of discrete values that
make up an image)

0 is white, 255 is black, and numbers in between are shades of gray
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10 11 12 13 14 15 16 17 18 19
’ 10/ 0 0 0 0 0 0 0 170 236 255
;- 11/ 0 0 0 0 0 0 0O 0 250 254
12l 0 0 0 0 0O O O 0 255 255

- 13] 0 0 0 0 0 0 0 0 240 245
14/ 0 0 0 0 0O 0O O 0 245 236

157 15/ 0 0 0 0 0 _0 0 0 251 253
. 16/ 0 0 0 0 0 0 124 255 255
171 0 0 0 0,0 0 0 210 254 120

- 18] 0 0 0 0 0 0 165 230 0
. \ 19] 0 0 0 0 0 120 154 220 O

what the

* Pixel in position [15, 15] is light. computer sees

Center is typically empty for O’s.
How does this compare with 3’s?







Darker pixels in the middle




Darker pixels in the middle

Can we define a set of heuristics (i.e. rules based on our
intuition), to classify digits?




Machine Learning Pipeline for Digit Recognition

Evaluate
Model

Dataset » Preprocessing » Train Model >
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Train, validation, and test sets

* Training Set: Used to adjust parameters of model

* Validation set — used to test how well we’re doing as we develop
* Prevents overfitting

e Test Set — used to evaluate the model once the model is done Train

Validation

Test




MNIST

* 60,000 Images in training set
* 10,000 Images in test set
* No explicit validation set
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MNIST

* 60,000 Images in training set
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What do you suggest
we do?




Machine Learning Pipeline for Digit Recognition

Evaluate
Model

Dataset » Preprocessing » Train Model <

0L0L00L00e/P0 o0 000
(I L T A A N A
1111111111111111
3233831323333 333

444444444444444444
S5 5855555575855 ¢55%
bbbblbbbbobaeseébeel
FT77771TTIN12%7 77
YEFiREIPPERPTTYFCE



Classifying MNIST digits requires predicting
1 of 10 possible values

Our Problem:

Input: X Target: Y
g Which digit is it?
(1) 2 =) Function: f - y@D = «p”
X =

28x28 pixels ‘ f(X)% Y ‘

x(2) = y(z) — «”




) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

Input' X What is our input space? Target: Y
g Which digit is it?
(1) 2 =) Function: f - y@D = «p”
X =

28x28 pixels ‘ f(X)% Y ‘

x(2) = y(Z) — “0”




) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

What is our i ? Target: Y
|nput: X at is our input space g
b
e e 2 [ output Which digit is it?

=) Function:f ™= yD = «”

£+ =

28x28 pixels ‘ f(X)9 Y ‘

x(Z) - y(Z) — “0"




) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

What is our input space? Target: Y

Input: X

What is our output space?

Pixel Grid Which digit is it?

=) Function:f ™= y = «2”

28x28 pixels ‘ f(X)% Y ‘

£@ y® = “0”




) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

What is our input space? Target: Y

Input: X

What is our output space?

Pixel Grid : o
What is our prediction task? Which digit is it?

=) Function: f - yD) = «2”

28x28 pixels ‘ f(X)% Y ‘

@ = y@ =0




Our simplified problem:

What is our input space?

Target: Y
InPUt: X What is our output space?
: e B
Pixel Grid What is our prediction task: s it digit 22
(1) — - — y =1
AT = =) Function: f

28x28 pixels ‘ f(X)=2> Y ‘

x(2) = y(2) =0 8




The Perceptron Algorithm

Loop Over Dataset (until no weights change)
- For each misclassified example
- update weights to make better prediction for example



The Perceptron Algorithm

1. Initialize 8 = 0
2. For N iterations or until 8 does not change
1. For each example x¥) with label y®
1. 1fy® = £(x®)), continue
2. Else, forall parameters 6; € g, 0; =06; + (y(k) — f(x(k))) .xi(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ®) ., o th :
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

. > = Need to start somewhere...
1. ‘ Initialize 8 = 0 ‘ any initial setting will work
2. For N iterations or until 8 does not change

1. Foreach example x® with label y®
1. 1fy® = F(x®), continue

2. Else, forall parameters 6; € 5, 6; =0; + (y(k) — f(x(k))) -xl-(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

N is referred to as “epochs”:

T ~ P Number of times the entire
1. Initialize 8 = 0 dataset is iterated through

2. ‘For N iterations‘or until 6 does not change

1. Foreach example x® with label y®
1. 1fy® = F(x®), continue

2. Else, forall parameters 6; € 5, 6; =0; + (y(k) — f(x(k))) -xl-(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ®) ., o th :
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

1. Initialize § = 0
2. For N iterations or until § does not change

1. | For each example x ) with label y ) I Loop over every example in dataset
1. 1fy® = F(x®), continue

2. Else, forall parameters 6; € 5, 6; =0; + (y(k) — f(x(k))) -xl-(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

—

1. Initialize 8 = 0

2. For N iterations or until § does not change

1. Foreach example x® with label y
1. I |fy(k) _ f(x(k)), continue I Look only at examples that are
misclassified (i.e., y© = f(x(0))
CARENEASERY) AR

2. Else, forall parameters 6; € 5, 0; = 0;

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

—

1. Initialize é) = ( I For every parameter in our perceptron...

2. For N iterations or until § does not change

1. Foreach example x® with label y®
1. 1fy® = F(x®), continue

2. Else, forall parameters 6; € §| 0; =0; + (y(k) (x(k)) (k) ‘

{oht x(0): kth training example, y(k) k’th training label
w: weights
b: biasg (k) i’th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

—

1. Initialize 5 = ( I For every parameter in our perceptron...

2. For N iterations or until 8 does not chanq £y% = 1 and F(x%) = 0 and x®>0
H9>0...

1. Foreach example x® with label y®
1. 1fy® = F(x®), continue

2. Else, forall parameters 6; € §| 0; =0; + (y(") — f(x(k))) ‘xi(k) ‘

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

—

1. Initialize 5 = ( I For every parameter in our perceptron...

2. For N iterations or until 8 does not chanq £y% = 1 and F(x%) = 0 and x®>0
H9>0...

1. For each example x¥) with label y® | P e—

1. 1fy® = F(x®), continue
2. Else, forall parameters 0; € §| 0; =0; + (y(") — f(x(k))) ‘xi(k) ‘

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

— If no parameters change, then we know

1. Initialize 8 = 0 that y = £(x®0)vk

2. For N iterations or until‘é does not change‘

1. Foreach example x® with label y®
1. 1fy® = F(x®), continue

2. Else, forall parameters 6; € 5, 6; =0; + (y(k) — f(x(k))) -xl-(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ®) . o th :
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



Converting Perceptrons to Multi-Class
Classification



Our Problem:
Input: X
Pixel Grid

x) = 2

28x28 pixels

@ —

Classifying MNIST digits requires predicting
1 of 10 possible values

Target: Y

Which digit is it?

=) Function: f L yD) = «2”

f(X)> Y|

y(Z) — “0"
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Our Problem:
Input: X

Pixel Grid

28x28 pixels

@ —

Classifying MNIST digits requires predicting
1 of 10 possible values

Target: Y

How do we do this?

Which digit is it?

=) Function:f ™= y = «2”

f(X)> Y|

Instead of outputting a
binary prediction, make
an output for each class.

y(Z) — “0"




Using Multiple Perceptrons

* We can use m perceptrons (where mis the number of output
classes)

* For MNIST, this would be 10 perceptrons

* Each individual perceptron will need to return a value, our model
will return the class with the highest value
* Here, value refers to the weighted sum before the threshold is applied



Using multiple perceptrons

Perceptron for predicting
«— Whether handwritten digitisa 0

ttttttt

Perceptron for predicting
uuuuuu — whether handwritten digitisa 9




Multi-class Perceptron

........ Outputl_
'—output1
— outputz
}_ outputs —
—
----- outputs;
z '—output3

Three separate perceptrons Three perceptrons sharing inputs



So how well does this do?

Perceptrons achieve ~85% accuracy on MNIST

Is this good?
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cando in ~20 minutes...




So how well does this do?

Perceptrons achieve ~85% accuracy on MNIST

Is this good?

Can be coded in ~20 minutes,
probably achieves better
accuracy than whatever else you
cando in ~20 minutes...

But 85% is not good enough
for the post office




Perceptrons

Are Perceptrons guaranteed to achieve
100% accuracy?

Xz

XOR Function

X,



Perceptrons

Are Perceptrons guaranteed to achieve XOR Function
100% accuracy?

Xz

Xa



Perceptrons

Are Perceptrons guaranteed to achieve
100% accuracy?

How can you put a linear separator on the
plot to separate the two classes?
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Perceptrons

Are Perceptrons guaranteed to achieve XOR Function
100% accuracy?

How can you put a linear separator on the
plot to separate the two classes?

Xz

Xa



Perceptrons

Are Perceptrons guaranteed to achieve XOR Function
100% accuracy?

How can you put a linear separator on the

plot to separate the two classes? T
>
There are simple functions that
perceptrons can’t learn!
0_

Xa



The Solution:

Perceptron

e

i Output

Layer 1

Multi-Layer Perceptron (MLP, Neural Network)

Y — Output

Layer 2



Perceptrons: Marvin Minsky and Seymor
Papert

* Published in 1969 and very pessimistic of “connectionism”

* Limited funding for neural networks research in the 1970s
* (First Al winter)

e 1980s —revival of neural networks research

* “Invention” of backpropagation, needed for efficient training of neural
networks

1987 - collapse of LISP machine market and abandonment of

expert systems
* (Second Al winter)



Remaining Questions (for next time)

* We trained perceptrons with a special algorithm for binary
classification. How does that change when we have multiple
outputs or multiple layers?

* Multi-layer perceptrons can achieve better performance on MNIST
and can work with non-linear separable data. Is there anything
they can’t learn?



Recap

First weekly quiz is up on Gradescope (as of
12:40pm), and due in 24 hours (1pm Thursday)

MNIST image data is a testbed for multi-
class classification

With a different perceptron output for each

Perceptrons have binary outputs (0 or 1), class! (and using continuous output value

how do we do multi-class classification?

not binary)

Perceptrons can only correctly classify
linearly separable data, how can we learn I Using multi-layer perceptrons (MLPs)! I
more complex functions?
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