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Challenges in RL and Robotics

* Simulation environment and real world won’t match perfectly
(Sim2Real Gap)

* Hard to collect enough data in the real world
* Impossible to simulate physics perfectly

* No guarantees of safe policies
* |[fyou follow a learned and cause an accident, that’s very expensive

* Sparse/Delayed rewards
* |tis challenging for a robotto know if itis doing well until a task is complete

* Partial Observability in the real world

* Robots do not have access to the entire world state, just what they can observe
with their sensors.



Why don’t we see more RL in deployed robots?
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Why don’t we see more RL in deployed robots?

Industrial robots work in very controlled environments
Deep Learning is not the answer to every problem

We already know optimal-control algorithms for certain types of
problems, Deep RL cannot be better than optimal solutions...

The strength of Deep Learning is its ability to handle uncertainty and
generalize to new data/environments



But there’s lots of problems left

How could we create
generally intelligent robots?




General Intelligence

What properties do we want from a generally intelligent robot?

. Adapt to new environments and tasks quickly
Goal alignment and value learning

. Work with multi-modal data

Safe exploration and failure recovery

Long term memory and experience integration
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Explainability and Interpretability



Adapt After Training: Continual Learning

What do you do when you encounter new data?
Keep trying to update your model...

2 things may go wrong:

Catastrophic Forgetting: The
network no longer knows how to
complete a task it once knew

Loss of Plasticity: The network
can no longer learn and adaptto
new tasks

Static ML Adaptive ML

Learn once Learn continually

Deploy once .

New
Data

Deploy continually

Image source: https://imerit.net/blog/a-complete-introduction-to-continual-learning/



https://imerit.net/blog/a-complete-introduction-to-continual-learning/

Catastrophic Forgetting
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https://www.nature.com/articles/s41467-021-22768-y

Loss Of Plasticity

a Antlecomotion c Loss of plasticity in ant locemotion with changing friction
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Catastrophic forgetting is
a problem whenever the
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Reward per eplsode

Agent is rewarded for foward motion and penaized if apphed torque or 2,000

contact forces are too large

But even worse... the b antcamoton i g o y 1
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Source: Loss of Plasticity in Continual Deep Learning X ' = = -



https://www.nature.com/articles/s41586-024-07711-7

Continual Backprop

Calculate utility of each neuron in
network

Reinitialize neurons that do not
contribute to the output

Continue to run SGD on dataset
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Figure 4: A feature/hidden-unit in a network. The utility of a
feature at time ¢ is the product of its contribution utility and
its adaptation utility. Adaptation utility is the inverse of the
sum of the magnitude of the incoming weights. And, contri-
bution utility is the product of the magnitude of the outgoing
weights and feature activation (h; ;) minus its average ( f“)

f1,i is arunning average of hy ;.




Adapting to New Tasks: Meta-Learning

Learner

Train a model that can adapt
quickly to new tasks

Initialize
Parameters

Support Xs
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Query Xs
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Query Ys
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Meta
Loss

Learner

Meta
Optimizer

With Updated

Meta-parameters

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(T)

4 for all 7; do
5: Evaluate VL7 (fg) with respect to K examples
6 Compute adapted parameters with gradient de-

scent: 0 = 0 — aVyeLr (fy)

end for Note: the meta-update is using different set of data.

Update 0 <— 0 — BV 3 7 ) L£7:(fo;)
9: end while

@ 3

Model Agnostic Meta-Learning (MAML)



https://medium.com/aimonks/mastering-adaptability-exploring-model-agnostic-meta-learning-maml-996796c890f0

General Intelligence

What properties do we want from a generally intelligent robot?

Adapt to new environments and tasks quickly
Goal alighment and value learning

Work with multi-modal data

Safe exploration and failure recovery

Long term memory and experience integration
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RLHF is a way to perform alignment
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How can robots learn hur . xferer *esgnd what we want them

to do? “"ir clip parable:

fa" paper clip factory and train an agent that is
I Specifying reward functions is hard I varded when it produces a paper clip. We give it the
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Paperclip Al wipes out humanity so that it can continue
Positive reward for surviving, negative reward for losing to make paperclips.



Learning Human Preferences

Given expert demonstration data, how can we learn to imitate the
expert policy?




Imitation Learning

Behavior Cloning seeks to imitate the expert policy

Given a dataset of (state, action) pairs (i.e., trajectories), use
supervised learning to learn a policy g (s)

Expert trajectory
Learned Policy
p—
1 estaeee '- ...... 3
Potential Issues: PO i \
No data on /
What happens when we encounter a state how to recover | i iy
we don’t have data for? —~——(; \

Image source: https://web.stanford.edu/class/cs234/slides/lecture?.pdf



Inverse Reinforcement Learning

IRL seeks to learn the reward function of the expert

Given a dataset of (state, action) pairs (i.e., trajectories), learn a
reward model. Then, use RL with the learned reward model to learn

a policy
Provided [ Observed Behavior ] [ Environment J
POtentIal ISSU es: Inverse Reinforcement Learning
There is more than one reward function that [ Reward Function ]
could reproduce the given trajectories. How do e '

T 1
i (Planning/RL)

we decide what the correct reward function is?

--------------------------

Reward-Maximizing .
. . . . Behavior ;
Image source: https://dkasenberg.github.io/inverse-reinforcement-learning-rescue/

---------------------------



General Intelligence

What properties do we want from a generally intelligent robot?

Adapt to new environments and tasks quickly
Goal alignment and value learning

Work with multi-modal data

Safe exploration and failure recovery

Long term memory and experience integration
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Working with Multi-Modal Data

Traditional ML

Training

¢ Individual siloed models
¢ Require task-specific training
¢ Lots of human supervised training

Foundation Models

Massive external data
i @
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" Foundation :
. Model §

Enterprise
proprietary data

Y

¢ Massive multi-tasking model
¢ Adaptable with little or no training
¢ Pre-trained unsupervised learning
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https://humanloop.com/blog/foundation-models

Representations Aren’t Free

This isrepresented as a 2D matrix

Classical Al

Rules or
Constraints

Optimization

These are hardcoded

This is very general, but
requires avery specific
representation

Solution



Representations Aren’t Free

Naively applying Deep Learning

.

Neural Network

How much harder is the image-based Sudoku?

What if your network doesn’t start with the ability to recognize
digits (i.e., wasn’t pre-trained on MNIST).




Differentiable Optimization Functions as Layers

06 {1 70 %0
020008250
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SAT solver is made to be differentiable,

Loss is computed on final output Solution

Amos and Kolter, Optnet: https://arxiv.org/pdf/1703.00443



https://arxiv.org/pdf/1703.00443

General Intelligence

What properties do we want from a generally intelligent robot?

Adapt to new environments and tasks quickly
Goal alignment and value learning

Work with multi-modal data

Safe exploration and failure recovery

Long term memory and experience integration
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Safe Exploration

Two issues with using the real world to collect trajectories for RL:
1. The realworld is too slow... (simulations are fast to run)

2. Before Robots learn a “good” policy, they may take dangerous
actions

How do we still encourage safe exploration?

Google Research



Failure Recovery?

Easiest way: Train failure recovery
policy through a separate process
(i.e., reward standing up). Learn
when to switch policies

Harder: Learn a single general
policy to optimize desired objective

Dally Tralnlng of Robots




General Intelligence

What properties do we want from a generally intelligent robot?

Adapt to new environments and tasks quickly
Goal alignment and value learning

Work with multi-modal data

Safe exploration and failure recovery

Long term memory and experience integration
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Long-Term Memory

1. What should be Claude Plays Pokémon

stored in long term | ————— it

e O ry? <thinking>
I* di (14, 31) on R 1. I need
coztgs‘geazoﬁgzrt;nizgzh Pallet Tg:n,ogﬁi I canngze :ﬁere's $£$£$$$
I bound t 32 with dinat ked i d: T
2. How should it be C Dotndary st zom 35 with coordinates marked 10 re

need to use the use_emulator function to move down and

"*

cross this boundary:

</thinking> e i et T T B
StO re d ? Using tool: use_emulator - Buttons: ['down'] L
b

1 <thinking> :
3‘ HOW Can It be It ;Ze;ggl haven't moved. My coordinates still show (14, ‘ "w*-\i*'j} m -'
31). Let me try moving down one more time using ‘ .J'l'f._'j"f,‘j"
accessed? use_emulator since the navigator can't cross the boundary: ‘ .
. </thinking> - .
Using tool: use_emulator - Buttons: ['down'] J"’jh’.:i;' -
A
P i
;M*-:r? - i3 |
oinewx is now

Reward signal helps to learn a policy for taking actions following!
How can we reward our agent for storing the correct information?

Claude plays pokemon



Imbuing Agents with Long Term Memory

@ Interaction 9
Read

Environment =~ LLM Agents Memory

erte

state reward action

A,

PN ¢ (a) Traditional memory system.
S, | Environment ]4—7 Wit
@ Interactiong ﬂ
“Read —

Environment =~ LLM Agents Agentic Memory

Can we model everything as an MDP?

- Markovimplies the next state
depends only on the current state
and action taken.

- If the next state depends on the entire
history of states, it is a partially
observable MDP (POMDP)

Xu et al., A-MEM: Agentic Memory for LLM Agents:
https://arxiv.or f/2502.1211


https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.spiceworks.com%2Ftech%2Fartificial-intelligence%2Farticles%2Fwhat-is-markov-decision-process%2F&psig=AOvVaw3li_OdM5T52BlxrXpoWYzw&ust=1745331654183000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCPCNhKKp6YwDFQAAAAAdAAAAABAE
https://arxiv.org/pdf/2502.12110

General Intelligence

What properties do we want from a generally intelligent robot?

Adapt to new environments and tasks quickly
Goal alignment and value learning

Work with multi-modal data

Safe exploration and failure recovery

Long term memory and experience integration
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Uncertainty in Deep Learning

How certain of a prediction is a Neural Network?

Actual: 7 Actual: 2 Actual: 2 Actual: 3
Predicted: 7 Predicted: 2 Predicted: 2 Predicted: 3
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iy i = =
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Uncertainty in Deep Learning

How certain of a prediction is a Neural Network?

0

I Neural Networks can be confidently incorrect! I

I Why do Adversarial Attacks work? I

Neural Networks are penalized
for uncertainty during training

Source: https://pyimagesearch.com/2021/03/01/adversarial-attacks-with-fgsm-fast-gradient-sign-method/



https://pyimagesearch.com/2021/03/01/adversarial-attacks-with-fgsm-fast-gradient-sign-method/

Uncertainty in Deep Learning

Help! I’'m uncertain of what
action to take. Please take over.

--------

Not only want the prediction, but

also an estimate of the ' N
uncertainty of that prediction




Standard Neural Network Bayesian Neural Network

Every parameter is a distribution (i.e., N (u, 0%)), output is a
distribution over labels, with quantified variance




Interpretability

LIME: What parts of an image contribute to a model’s predictions?
Local Interpretable Model-agnostic Explanations (LIME)

1. Useimage segmentation to group pixels together into super pixels
2. Run predictions on image with some super-pixels masked out

3. Train a simple classifier to predict which super-pixels were most
Important



LIME

1. Separate Image into Super-pixels
using image segmentation

Original Image Interpretable
Components



0.85
How much does the
2. Run classification with some super- I] presence (or absence) of
pixels masked 0.00001 pixels affect the prediction?

0.52




LIME

Perturbed Instances | P(tree frog)

0.85

3. Train simple regression
model to determine
feature weighting of the

super-pixels 0.00001

Original Image
P(tree frog) = 0.54

0.52

/

>
Locally weighted
regression

4
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Explanation
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