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On-Policy and Off-Policy Learning

RL algorithms collect experiences and learn from these
experiences

On-Policy Algorithms have to collect experiences with the policy
they are learning

Off-Policy Algorithms can use any policy to collect experiences



Review: On + Off-Policy Learning

Summary

Algorithms

On-Policy

Learns policy/value function based on
policy used during training

SARSA, Policy Gradient, Actor Critic, PPO

Off Policy

Learns policy independent of
policy used to collect experiences
during training

Q-Learning, Off-policy Actor-
Critic, Deep Deterministic Policy
Gradient (DDPG)



Off-Policy Learning

Most of the time in RL, collecting
the data is computationally
expensive.

So far, we’ve looked at an example,
learned from it, and discarded it.

In all our other problems, we
always learned from data multiple
times (i.e., epochs)

Maybe we shouldn’t throw away useful
data immediately...




Experience Replay and Replay Buffers

Keep a memory of experiences
(state, action, reward,
next_state)

Store experience

As you collect new tuples
experiences, remove oldest | >
experiences from buffer (59,0, r®,, s

To train model, sample batch
of data from buffer
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On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

\_/ Sample minibatch
Store experience (uniformly) for

tuples : rainin
P ORECRRON training
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On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

\_/ Sample minibatch
Store experience (uniformly) for

tuples : trainin
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On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

Store experience

No! Data in the buffer was collected with
an older policy and we can only learn on

experiences collected using the current

policy...
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But what if we actually could...

Off-Policy Policy Gradient:
Data collected under policy f(al|s) (i.e., older version of policy)

We can re-weight our gradient according to the old policy:
m(als)

P~ Blals)

Vo] (0) = 2 p:Q"™(s,a)Vgln (s, a)
(s,a)eEbatch

How much should we weigh each experience?

Actor-Critic with Importance Sampling I

Off-Policy Actor Critic: https://arxiv.org/pdf/1205.4839



But what if we actually could...

Off-Policy Policy Gradient:
Data collected under policy f(al|s) (i.e., older version of policy)

We can re-weight our gradient according to the old policy:
m(als)

P~ Blals)

Vo] (0) = 2 p:Q™(s,a)Vgln (s, a)
(s,a)eEbatch

Actor-Critic with Importance Sampling I I Store action probabilities f(als) in replay buffer

Off-Policy Actor Critic: https://arxiv.org/pdf/1205.4839



Trust Region Policy Optimization

Insight: the reason that variance is bad is that it can cause large updates to g

Add a constraint to how large of an update can be applied:

KL-Divergence between old and new policy must be below some hyperparameter A

TRPO works well and has lower variance during training, but it’s painfully complicated.
Inverting a Hessian introduces numerical precision errors that need to be avoided.
Can we come up with something simpler?

new Gradient incorporating constraint:

L0, 0)=_ E E(MS) Al (s, a) Y

. o 9
8,arTg,. ng(fl‘S) \ gTH—lgH_lg'

Advantage function (or TD-Error) His the Hessian. i.e.. 2nd

order partial
Paper: https://arxiv.org/pdf/1502.05477 derivatives, gis the gradient



Proximal Policy Optimization

TRPO is complicated...

What if instead of constraining the update with KL-Divergence, we
clipped the update if it’s too big...

. % (als)
Pclipped = Cllp[n_old(als) ,

1—¢€1+ €]

JPPO(6) = E[min(peiipped ° (r + V™ (s — v”‘”“(s)) . (r LT (s — V”Old(s))]

Spinning Up PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html


https://spinningup.openai.com/en/latest/algorithms/ppo.html

PPO

PPO is (basically) State-Of-The-Art (SOTA) 1000
Provides fast, sample-efficient, and stable training T 800
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PPO

PPO is (basically) State-Of-The-Art (SOTA) 1000
Provides fast, sample-efficient, and stable training T 300
L
>
@ 600
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S 400
Q
=
200

0 100 200 300 400 500
# lteration




PPO: OpenAlS5




PPO

Final phase of training ChatGPT

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

A™C

Write a story
about otters.




RL Hierarchy

Policy Optimization

- -

RL Algorithms

!

¢

Model-Free RL

{

Policy Gradient

A2C / A3C

PPO

A

TRPO

>

\

Model-Based RL

Modelis essentially the Transition
Function and Reward function?

—

Q-Learning Learn the Model Given the Model
> DQN > World Models L> AlphaZero
DDPG < ) h
. > C51 > 12A
TD3 < g )
—>  QR-DQN >  MBMF
SAC <
—> HER > MBVE

Source and helpful explanations: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html


https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Language Modelling Revisited

Typically framed as supervised
learning-style problem:

1. Given some context (e.g., a
question)
2. Predictthe next token.

Output next token prediction

Output Token

Vectors I|T| [ Ny O

r

Layer Norm

( Decoder Block
( Decoder Block
( Decoder Block

o i f i
Position Embedding

T
()~

i

Masked Self-Attention

L5 6T ¢

put Tok i

*

Input a sequence

Layer Norm

A




Turning Language modelling into an MDP
MDP: <S, A, P, R, y>

States: Each state is a sequence of tokens

Actions: LLM adds the nexttoken

Transitions are deterministic, given a state and next token, the next state is just

Transition Function: the token appended to the previous state

Reward Function: TheLLM should be rewarded for good responses, but how do we know what the
quality of response is?



Reward Modeling

In MDPs, the reward function is a mapping from states to rewards

|
Q

Reward Modeling: Learn a reward function




Reward Modeling

Prompts Dataset

Sample many prompts

Reward (Preference)

text

Train on
{sample, reward} pairs

Outputs are ranked
(relative, ELO, etc.)

f

Initial Language Model

Lorem ipsum dolor
sit amet, consectet
adipiscing elit. Aen
Donec quam felis

vulputate eget, arc

Nam quam nunc

eros faucibus tincid Human Scoring
luctus pulvinar, herl

W
JIVRN

Generated text



https://huggingface.co/blog/rlhf

Source: https://huggingface.co/blog/rlhf

RL+Human Feedback (RLHF)

Prompts Dataset

AN X: Adogis... N
'd N\ /" Tuned Language )
Initial Language Model Model (RL Policy)
% Reinforcement Learning
0@\~ Update (e.g. PPO)
Z
< 0 0+ VyJ(0)
N
POD® RLHF ®®®® Reward (Preference)
Base Text ®® ®® Tuned Text ®@®® Model
y: a furry mammal y. man’s best friend > % (8%\
g A\
>

—AkL DxL (7ppo (y]) || Thase(y|2))
KL prediction shift penalty



https://huggingface.co/blog/rlhf

Chat-GPT Training Revisited

Source: htt

Step 1

Collect demonstration data
and train a supervised policy.

F "
A prompt is sample from (84

our prompt dataset. Explain reinforcement
learning to a 6 year old.

'

A labeler demonstrates @

the desired output 2
behavior. .=
We give treats and
punishments to teach...
SFT
o 0
/. \Y

This data is used to \'%‘
fine-tune GPT-3.5 with L
supervised learning. V4

l.com/index/chat

Step 2

Collect comparison data and
train a reward model.

~
A prompt and several {_J

model outputs are Explain reinforcement
sampled. learning to a 6 year old.

o

In reinforcement Explain rewards...
learning, the
agents...

o

In machine ‘We give treats and
learning... punishments to
teach..

. Y 7
A labeler ranks the
outputs from best
to worst. °>°,°>e
RM

o._0
This data is used to o@o;&}
train our reward model. o e

0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is v ¢
sampled from Write a story
the dataset. about otters.
. PPO
The PPO model is -~
initialized from the ./)?.5%.
supervised policy. A% 5

The policy generates

an output.

The reward model .RM.
calculates a reward ./)?‘7\\.
for the output. =

The reward is used
to update the policy rk
using PPO.



https://openai.com/index/chatgpt/

DeepSeek

So what did DeepSeek do earlier this year that worked so well?

GRPO: Group Relative Policy Optimization
Sample multiple responses for a given prompt, use relative rewards to train

|o

Jrro(6) =E[q ~ P(Q),0 ~ o, (0]q)] l me { mg(0¢|q, 0<¢) At,clip( g (0¢]q, 0<¢t) 1-¢1 +£) Afl
t=1

|0| = 0,14 (Ot |q’ 0<I‘) 0,14 (ot‘|ql 0<t) ’

Jerpo(6) = E[q ~ P(Q), {oi}L; ~ 76,,(0lq)]

1& 1 & [ meielgoiee) . . [ 7o(oiclg,0i<r) A
G D, ), {min Ay, clip 1-¢1+¢| A | - BDky [mollmres]
t=1

31'901(1 (Oi,t |QI 0i,<t) IBOM (Oi,tl‘Ir 0i,<t) ’

A B . Don’t need a critic model to estimate quality of trajectories, just use
Ai t =TI = normalized rewards for sampled responses for a single prompt. Use
/ Std (I') KL Divergence directly in loss function.

Source: DeepSeek Math, https://arxiv.org/pdf/2402


https://arxiv.org/pdf/2402.03300

Policy
Model

Policy
Model

-

Source: DeepSeek Math, https://arxiv.org/pdf/2402.03300
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https://arxiv.org/pdf/2402.03300

Robots!

Robots are the most concrete example of autonomous agents
So where are all of the robots trained with RL?

| ’_[Agent]

state reward action
S, R A

R [
- "
*~+| Enwmnment]<




Don’t specify algorithm, but have PPO examples in unitree_rl_gym



Challenges in RL and Robotics

* Simulation environment and real world won’t match perfectly
(Sim2Real Gap)

* Hard to collect enough data in the real world
* Impossible to simulate physics perfectly

* No guarantees of safe policies
* |[fyou follow a learned and cause an accident, that’s very expensive

* Sparse/Delayed rewards
* |tis challenging for a robotto know if itis doing well until a task is complete

* Partial Observability in the real world

* Robots do not have access to the entire world state, just what they can observe
with their sensors.



Why don’t we see more RL in deployed robots?

;I ‘—}“- S =

6 WAREHOUSE ®
ROBOTS |




Why don’t we see more RL in deployed robots?

Deep Learning is not the answer to every problem

We already know optimal-control algorithms for certain types of
problems, Deep RL cannot be better than optimal solutions...



But there’s lots of problems left

How could we create
generally intelligent robots?




General Intelligence

What properties do we want from a generally intelligent robot?

Adapt to new environments and tasks quickly
Goal alignment and value learning

Work with multi-modal data

Safe exploration and failure recovery

Long term memory and experience integration

AR 2 o

Explainability and Interpretability



Adapt After Training: Continual Learning

What do you do when you encounter new data?
Keep trying to update your model...

2 things may go wrong:

Catastrophic Forgetting: The
network no longer knows how to
complete a task it once knew

Loss of Plasticity: The network
can no longer learn and adaptto
new tasks

Static ML Adaptive ML

Learn once Learn continually

Deploy once .

New
Data

Deploy continually

Image source: https://imerit.net/blog/a-complete-introduction-to-continual-learning/



https://imerit.net/blog/a-complete-introduction-to-continual-learning/

Catastrophic Forgetting

Train network on MNIST, q
then switch to FMNIST Task #1: MNIST
(separate outputs) '

Task #2; FMNIST

|deally, our networks
would remember how to
complete the MNIST task e ey - CNGE

Forgetting “|

\ — MNIST -

Y = TMNIST
k d
1

Test Accuracies (%
=

_ WWMMJ -
U5 205 0 75 i



https://www.nature.com/articles/s41467-021-22768-y

Loss Of Plasticity

a Antlecomotion c Loss of plasticity in ant locemotion with changing friction

‘ 1(1‘!/%4({'(‘(

Catastrophic forgetting is
a problem whenever the

task switches ;45.’:\'»_?\ “‘.:\\?-\

J

Agent controls the torgque applied to highighted jointe

4,000 4

~

Reward per eplsode

Agent is rewarded for foward motion and penaized if apphed torque or 2,000

contact forces are too large

But even worse... the b antcamoton i g o y 1
network may not learn to

complete new tasks P ,,s\'/~ I :/‘3\\ e

BN L2 regulanzation weth tuned PPO
BN Continual backpropagation with L2 and tuned PPO
When friction = high Whan friction is low, riction can also take
walking can be refiable the ant may sip or fal on ntermedate values

Source: Loss of Plasticity in Continual Deep Learning X ' = = -



https://www.nature.com/articles/s41586-024-07711-7

Continual Backprop

Calculate utility of each neuron in
network

Reinitialize neurons that do not
contribute to the output

Continue to run SGD on dataset

y] = ‘h’l-'l.,f» JAZ-":-"| Z:.[—ll |/u"l,i.k‘.f‘
[i,t — —
E?_L 11 | Wi—1.5.i.t ‘

Figure 4: A feature/hidden-unit in a network. The utility of a
feature at time ¢ is the product of its contribution utility and
its adaptation utility. Adaptation utility is the inverse of the
sum of the magnitude of the incoming weights. And, contri-
bution utility is the product of the magnitude of the outgoing
weights and feature activation (h; ;) minus its average ( f“)

f1,i is arunning average of hy ;.




Adapting to New Tasks: Meta-Learning

Learner

Train a model that can adapt
quickly to new tasks

Initialize
Parameters

Support Xs

o

oo | @ || ¥ >

Support Ys-=

Query Xs

>

Query Ys
L

|

Meta
Loss

Learner

Meta
Optimizer

With Updated

Meta-parameters

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(T)

4 for all 7; do
5: Evaluate VL7 (fg) with respect to K examples
6 Compute adapted parameters with gradient de-

scent: 0 = 0 — aVyeLr (fy)

end for Note: the meta-update is using different set of data.

Update 0 <— 0 — BV 3 7 ) L£7:(fo;)
9: end while

@ 3

Model Agnostic Meta-Learning (MAML)



https://medium.com/aimonks/mastering-adaptability-exploring-model-agnostic-meta-learning-maml-996796c890f0

General Intelligence

What properties do we want from a generally intelligent robot?

Adapt to new environments and tasks quickly
Goal alighment and value learning

Work with multi-modal data

Safe exploration and failure recovery

Long term memory and experience integration

AR 2 o

Explainability and Interpretability



RLHF is a way to perform alignment

Prompts Dataset

¥ x: A dogis..

(

W

KL prediction shift penalty

—AkL DxL (7ppo (y|2) || Thase(y|z))

N\ /" Tuned Language )
Initial Language Model Model (RL Policy)
X @\ Reinforcement Learning
Update (e.g. PPO)
Z
< 0« 6+ VyJ(6)
AN
®RO® RLHF @®®®® Reward (Preference)
Base Text o® © Tuned Text ®@®® Model
e N
y: a furry mammal y: man’s best friend ) % OV¢O}O :\;“’O ro
\_ 7 J - OO
J Ko
I LY
>
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How can robots learn hur . xferer *esgnd what we want them

to do? “"ir clip parable:

fa" paper clip factory and train an agent that is
I Specifying reward functions is hard I varded when it produces a paper clip. We give it the

Il_l

peiiel g e W ’_f
FIVINVIVIR] ANW™ [

?IIAII&ID [r

ﬁ.
I:I-" PUSH START

’_ D 1989 Nin le::lo
B o e o R EEHTES =
Paperclip Al wipes out humanity so that it can continue
Positive reward for surviving, negative reward for losing to make paperclips.



General Intelligence

What properties do we want from a generally intelligent robot?

Adapt to new environments and tasks quickly
Goal alignment and value learning

Work with multi-modal data

Safe exploration and failure recovery

Long term memory and experience integration

R N o e

Explainability and Interpretability



Working with Multi-Modal Data

Traditional ML

Training

¢ Individual siloed models
¢ Require task-specific training
¢ Lots of human supervised training

Foundation Models

Massive external data
i @
2| '"W'
&

" Foundation :
. Model §

Enterprise
proprietary data

Y

¢ Massive multi-tasking model
¢ Adaptable with little or no training
¢ Pre-trained unsupervised learning

Prompting
—)

Prompting
—

Q8A

Translation

(/) Classification

\&/

V)

] Code Gen

—r

@)
)


https://humanloop.com/blog/foundation-models

	Slide 1
	Slide 2: On-Policy and Off-Policy Learning
	Slide 3: Review: On + Off-Policy Learning
	Slide 4: Off-Policy Learning
	Slide 5: Experience Replay and Replay Buffers
	Slide 6: On-Policy Learning
	Slide 7: On-Policy Learning
	Slide 8: On-Policy Learning
	Slide 9: But what if we actually could…
	Slide 10: But what if we actually could…
	Slide 11: Trust Region Policy Optimization
	Slide 12: Proximal Policy Optimization
	Slide 13: PPO
	Slide 14: PPO
	Slide 15: PPO: OpenAI5
	Slide 16: PPO
	Slide 17: RL Hierarchy
	Slide 18: Language Modelling Revisited
	Slide 19: Turning Language modelling into an MDP
	Slide 20: Reward Modeling 
	Slide 21: Reward Modeling
	Slide 22: RL+Human Feedback (RLHF)
	Slide 23: Chat-GPT Training Revisited
	Slide 24: DeepSeek
	Slide 25
	Slide 26: Robots!
	Slide 27
	Slide 28: Challenges in RL and Robotics
	Slide 29: Why don’t we see more RL in deployed robots?
	Slide 30: Why don’t we see more RL in deployed robots?
	Slide 31: But there’s lots of problems left
	Slide 32: General Intelligence
	Slide 33: Adapt After Training: Continual Learning
	Slide 34: Catastrophic Forgetting
	Slide 35: Loss Of Plasticity
	Slide 36: Continual Backprop
	Slide 37: Adapting to New Tasks: Meta-Learning
	Slide 38: General Intelligence
	Slide 39: RLHF is a way to perform alignment
	Slide 40: Alignment and Value Learning
	Slide 41: General Intelligence
	Slide 42: Working with Multi-Modal Data

