
Deep
Learning

Eric Ewing

CSCI 1470

Friday,
4/18/25

Day 33: PPO, RLHF, and AGI

On-Policy and Off-Policy Learning

RL algorithms collect experiences and learn from these
experiences

On-Policy Algorithms have to collect experiences with the policy
they are learning

Off-Policy Algorithms can use any policy to collect experiences

Review: On + Off-Policy Learning

On-Policy Off Policy

Summary Learns policy/value function based on
policy used during training

Learns policy independent of
policy used to collect experiences
during training

Algorithms SARSA, Policy Gradient, Actor Critic, PPO Q-Learning, Off-policy Actor-
Critic, Deep Deterministic Policy
Gradient (DDPG)

Off-Policy Learning

Most of the time in RL, collecting
the data is computationally
expensive.

So far, we’ve looked at an example,
learned from it, and discarded it.

In all our other problems, we
always learned from data multiple
times (i.e., epochs)

Maybe we shouldn’t throw away useful
data immediately…

Experience Replay and Replay Buffers

Keep a memory of experiences
(state, action, reward,
next_state)

As you collect new
experiences, remove oldest
experiences from buffer

To train model, sample batch
of data from buffer

On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

No! Data in the buffer was collected with
an older policy and we can only learn on
experiences collected using the current
policy…

On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

No! Data in the buffer was collected with
an older policy and we can only learn on
experiences collected using the current
policy…

But what if we actually could…

Off-Policy Policy Gradient:
Data collected under policy 𝛽(𝑎|𝑠) (i.e., older version of policy)

We can re-weight our gradient according to the old policy:

𝜌 =
𝜋 𝑎 𝑠

𝛽 𝑎 𝑠

∇𝜃𝐽 𝜃 =

𝑠,𝑎 ∈𝑏𝑎𝑡𝑐ℎ

𝜌 ⋅ 𝑄𝜋 𝑠, 𝑎 ∇𝜃ln 𝜋(𝑠, 𝑎)

Off-Policy Actor Critic: https://arxiv.org/pdf/1205.4839

Actor-Critic with Importance Sampling
How much should we weigh each experience?

But what if we actually could…

Off-Policy Policy Gradient:
Data collected under policy 𝛽(𝑎|𝑠) (i.e., older version of policy)

We can re-weight our gradient according to the old policy:

𝜌 =
𝜋 𝑎 𝑠

𝛽 𝑎 𝑠

∇𝜃𝐽 𝜃 =

𝑠,𝑎 ∈𝑏𝑎𝑡𝑐ℎ

𝜌 ⋅ 𝑄𝜋 𝑠, 𝑎 ∇𝜃ln 𝜋(𝑠, 𝑎)

Off-Policy Actor Critic: https://arxiv.org/pdf/1205.4839

Actor-Critic with Importance Sampling Store action probabilities 𝛽 𝑎 𝑠 in replay buffer

Trust Region Policy Optimization

Insight: the reason that variance is bad is that it can cause large updates to 𝜋𝜃

Add a constraint to how large of an update can be applied:
KL-Divergence between old and new policy must be below some hyperparameter Δ

𝐷𝐾𝐿(𝜋𝜃
𝑛𝑒𝑤(⋅ |𝑠)| 𝜋𝜃

𝑜𝑙𝑑 ⋅ 𝑠 ≤ Δ

Paper: https://arxiv.org/pdf/1502.05477

new

old

Advantage function (or TD-Error)

Gradient incorporating constraint:

H is the Hessian, i.e., 2nd order partial
derivatives, g is the gradient

TRPO works well and has lower variance during training, but it’s painfully complicated.
Inverting a Hessian introduces numerical precision errors that need to be avoided.
Can we come up with something simpler?

Proximal Policy Optimization

TRPO is complicated…

What if instead of constraining the update with KL-Divergence, we
clipped the update if it’s too big…

𝜌𝑐𝑙𝑖𝑝𝑝𝑒𝑑 = 𝑐𝑙𝑖𝑝[
𝜋𝑛𝑒𝑤 𝑎 𝑠

𝜋𝑜𝑙𝑑 𝑎 𝑠
, 1 − 𝜖, 1 + 𝜖]

𝐽𝑃𝑃𝑂 𝜃 = 𝔼[min(𝜌𝑐𝑙𝑖𝑝𝑝𝑒𝑑 ⋅ 𝑟 + 𝛾𝑉𝜋𝑜𝑙𝑑
𝑠′ − 𝑉𝜋𝑜𝑙𝑑

𝑠 , 𝜌 𝑟 + 𝛾𝑉𝜋𝑜𝑙𝑑
𝑠′ − 𝑉𝜋𝑜𝑙𝑑

𝑠]

Spinning Up PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html

https://spinningup.openai.com/en/latest/algorithms/ppo.html

PPO

PPO is (basically) State-Of-The-Art (SOTA)

Provides fast, sample-efficient, and stable training

PPO

PPO is (basically) State-Of-The-Art (SOTA)

Provides fast, sample-efficient, and stable training

PPO: OpenAI5

PPO

Final phase of training ChatGPT

RL Hierarchy

Source and helpful explanations: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Model is essentially the Transition
Function and Reward function?

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Language Modelling Revisited

Input a sequence

Output next token prediction

Typically framed as supervised
learning-style problem:

1. Given some context (e.g., a
question)

2. Predict the next token.

Turning Language modelling into an MDP

MDP: <S, A, P, R, 𝛾>

States:
Actions:
Transition Function:
Reward Function:

Each state is a sequence of tokens

LLM adds the next token

Transitions are deterministic, given a state and next token, the next state is just
the token appended to the previous state

The LLM should be rewarded for good responses, but how do we know what the
quality of response is?

Reward Modeling

In MDPs, the reward function is a mapping from states to rewards

Reward Modeling: Learn a reward function

Reward Modeling

Source: https://huggingface.co/blog/rlhf

https://huggingface.co/blog/rlhf

RL+Human Feedback (RLHF)

Source: https://huggingface.co/blog/rlhf

https://huggingface.co/blog/rlhf

Chat-GPT Training Revisited

Source: https://openai.com/index/chatgpt/

https://openai.com/index/chatgpt/

DeepSeek

So what did DeepSeek do earlier this year that worked so well?
GRPO: Group Relative Policy Optimization
Sample multiple responses for a given prompt, use relative rewards to train

Don’t need a critic model to estimate quality of trajectories, just use
normalized rewards for sampled responses for a single prompt. Use
KL Divergence directly in loss function.

Source: DeepSeek Math, https://arxiv.org/pdf/2402.03300

https://arxiv.org/pdf/2402.03300

Source: DeepSeek Math, https://arxiv.org/pdf/2402.03300

https://arxiv.org/pdf/2402.03300

Robots!

Robots are the most concrete example of autonomous agents

So where are all of the robots trained with RL?

Don’t specify algorithm, but have PPO examples in unitree_rl_gym

Challenges in RL and Robotics

• Simulation environment and real world won’t match perfectly
(Sim2Real Gap)
• Hard to collect enough data in the real world
• Impossible to simulate physics perfectly

• No guarantees of safe policies
• If you follow a learned and cause an accident, that’s very expensive

• Sparse/Delayed rewards
• It is challenging for a robot to know if it is doing well until a task is complete

• Partial Observability in the real world
• Robots do not have access to the entire world state, just what they can observe

with their sensors.

Why don’t we see more RL in deployed robots?

Why don’t we see more RL in deployed robots?

Deep Learning is not the answer to every problem

We already know optimal-control algorithms for certain types of
problems, Deep RL cannot be better than optimal solutions...

But there’s lots of problems left

How could we create
generally intelligent robots?

General Intelligence

What properties do we want from a generally intelligent robot?

1. Adapt to new environments and tasks quickly
2. Goal alignment and value learning
3. Work with multi-modal data
4. Safe exploration and failure recovery
5. Long term memory and experience integration
6. Explainability and Interpretability

Adapt After Training: Continual Learning

Image source: https://imerit.net/blog/a-complete-introduction-to-continual-learning/

What do you do when you encounter new data?

Keep trying to update your model…

2 things may go wrong:

Catastrophic Forgetting: The
network no longer knows how to
complete a task it once knew

Loss of Plasticity: The network
can no longer learn and adapt to
new tasks

https://imerit.net/blog/a-complete-introduction-to-continual-learning/

Catastrophic Forgetting

Train network on MNIST,
then switch to FMNIST
(separate outputs)

Ideally, our networks
would remember how to
complete the MNIST task

Source: https://www.nature.com/articles/s41467-021-22768-y

https://www.nature.com/articles/s41467-021-22768-y

Loss Of Plasticity

Catastrophic forgetting is
a problem whenever the
task switches

But even worse… the
network may not learn to
complete new tasks

Source: Loss of Plasticity in Continual Deep Learning https://www.nature.com/articles/s41586-024-07711-7

https://www.nature.com/articles/s41586-024-07711-7

Continual Backprop

Calculate utility of each neuron in
network

Reinitialize neurons that do not
contribute to the output

Continue to run SGD on dataset

Adapting to New Tasks: Meta-Learning
Train a model that can adapt
quickly to new tasks

Model Agnostic Meta-Learning (MAML)

Source: https://medium.com/aimonks/mastering-adaptability-exploring-model-agnostic-meta-learning-maml-996796c890f0

https://medium.com/aimonks/mastering-adaptability-exploring-model-agnostic-meta-learning-maml-996796c890f0

General Intelligence

What properties do we want from a generally intelligent robot?

1. Adapt to new environments and tasks quickly
2. Goal alignment and value learning
3. Work with multi-modal data
4. Safe exploration and failure recovery
5. Long term memory and experience integration
6. Explainability and Interpretability

RLHF is a way to perform alignment

Alignment and Value Learning

How can robots learn human preferences and what we want them
to do?

Specifying reward functions is hard

Positive reward for surviving, negative reward for losing

The paper clip parable:
You run a paper clip factory and train an agent that is
rewarded when it produces a paper clip. We give it the
ability to learn even better strategies. The agent wants
to maximize reward.

The agent needs to secure more resources for paper
clips and starts strip mining.

Humans think strip mining is bad, and want to turn off
the paperclip AI. The paperclip AI knows if it is turned
off, it will no longer get rewards.

Paperclip AI wipes out humanity so that it can continue
to make paperclips.

General Intelligence

What properties do we want from a generally intelligent robot?

1. Adapt to new environments and tasks quickly
2. Goal alignment and value learning
3. Work with multi-modal data
4. Safe exploration and failure recovery
5. Long term memory and experience integration
6. Explainability and Interpretability

Working with Multi-Modal Data

Image source: https://humanloop.com/blog/foundation-models

https://humanloop.com/blog/foundation-models

	Slide 1
	Slide 2: On-Policy and Off-Policy Learning
	Slide 3: Review: On + Off-Policy Learning
	Slide 4: Off-Policy Learning
	Slide 5: Experience Replay and Replay Buffers
	Slide 6: On-Policy Learning
	Slide 7: On-Policy Learning
	Slide 8: On-Policy Learning
	Slide 9: But what if we actually could…
	Slide 10: But what if we actually could…
	Slide 11: Trust Region Policy Optimization
	Slide 12: Proximal Policy Optimization
	Slide 13: PPO
	Slide 14: PPO
	Slide 15: PPO: OpenAI5
	Slide 16: PPO
	Slide 17: RL Hierarchy
	Slide 18: Language Modelling Revisited
	Slide 19: Turning Language modelling into an MDP
	Slide 20: Reward Modeling
	Slide 21: Reward Modeling
	Slide 22: RL+Human Feedback (RLHF)
	Slide 23: Chat-GPT Training Revisited
	Slide 24: DeepSeek
	Slide 25
	Slide 26: Robots!
	Slide 27
	Slide 28: Challenges in RL and Robotics
	Slide 29: Why don’t we see more RL in deployed robots?
	Slide 30: Why don’t we see more RL in deployed robots?
	Slide 31: But there’s lots of problems left
	Slide 32: General Intelligence
	Slide 33: Adapt After Training: Continual Learning
	Slide 34: Catastrophic Forgetting
	Slide 35: Loss Of Plasticity
	Slide 36: Continual Backprop
	Slide 37: Adapting to New Tasks: Meta-Learning
	Slide 38: General Intelligence
	Slide 39: RLHF is a way to perform alignment
	Slide 40: Alignment and Value Learning
	Slide 41: General Intelligence
	Slide 42: Working with Multi-Modal Data

