
Deep
Learning

Eric Ewing

CSCI 1470

Wednesday
4/16/25

Day 31: Actor-Critic and Friends

A vector space, get it?

Goals for Today

1. Review REINFORCE and practice calculations
2. Actor Critic Algorithms
3. PPO (i.e., the RL algorithm used for Chat-GPT)

Goals for Today

1. Review REINFORCE and practice calculations
2. Actor Critic Algorithms
3. PPO (i.e., the RL algorithm used for Chat-GPT)

Review:
𝐽 𝜃 = 𝔼[𝐺0]

∇𝜃𝐽 𝜃 = 𝔼[σ𝑡=0
𝑇 𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Key Idea for today: Variance is the enemy

Policy Collapse: https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse

Cartpole

https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse

Multi-Arm Bandits

What’s a one-armed bandit?

Multi-Arm Bandits

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

When an arm is pulled, the
rewards are random.

Each arm returns a reward
with (different) unknown
mean and variance

Multi-Arm Bandits

Single-armed bandit

When an arm is pulled, the
rewards are random.

Each arm returns a reward
with (different) unknown
mean and variance

Bandit Problems are essentially
MDPs with a single state.

Useful testbed for a number of
algorithms and very useful for theory

Policy Gradient on Multi-Arm Bandits

Action 1

Action 2

Action 3

𝜃1

𝜃2

𝜃3

Maintain parameter for each action, 𝜃𝑖

Policy Gradient on Multi-Arm Bandits

Action 1

Action 2

Action 3

𝜃1

𝜃2

𝜃3

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

Maintain parameter for each action, 𝜃𝑖

Policy Gradient on Multi-Arm Bandits

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Maintain parameter for each action, 𝜃𝑖

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

Policy Gradient on Multi-Arm Bandits

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

Maintain parameter for each action, 𝜃𝑖

𝜋𝜃 𝑎1 =
𝑒

𝑒 +
1
𝑒

+ 1
= 0.66

Policy Gradient on Multi-Arm Bandits

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

T

Policy Gradient on Multi-Arm Bandits

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take 5 actions according to 𝜋𝜃:
𝜏 = (𝑎1, 3), 𝑎2, −1 , (𝑎3, 2), 𝑎1, 4 , (𝑎3, 1)

T

Policy Gradient on Multi-Arm Bandits

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take 1 action according to 𝜋𝜃:
𝜏 = (𝑎1, 3)

Policy Gradient (without states): ∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)
T

∇𝜃𝐽 𝜃 = ∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

𝜏 = (𝑎1, 3)

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is the shape of ∇𝜃𝐽 𝜃 ?

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is the shape of ∇𝜃𝐽 𝜃 ?
=.

1
0
0

−

𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3
…
…

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is the shape of ∇𝜃𝐽 𝜃 ?
=.

1
0
0

−

𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3
…
…

𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1) = 3 ⋅
0.34

−0.09
−0.25

RL Conceptual Question Hints

RL Conceptual Question Hints

• For each trajectory, compute 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 𝑡) for each timestep
and sum them together.

RL Conceptual Question Hints

• For each trajectory, compute 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 𝑡) for each timestep
and sum them together.

• There will be variance between the gradient estimates of different
trajectories (i.e., ∇𝜃𝐽 𝜃 will be different for each trajectory)

RL Conceptual Question Hints

• For each trajectory, compute 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 𝑡) for each timestep
and sum them together.

• There will be variance between the gradient estimates of different
trajectories (i.e., ∇𝜃𝐽 𝜃 will be different for each trajectory)

• Compute mean variance between same elements of different
gradients.

RL Conceptual Question Hints

• For each trajectory, compute 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 𝑡) for each timestep
and sum them together.

• There will be variance between the gradient estimates of different
trajectories (i.e., ∇𝜃𝐽 𝜃 will be different for each trajectory)

• Compute mean variance between same elements of different
gradients.

• Value of each state is average discounted returns from that state

RL Conceptual Question Hints

• For each trajectory, compute 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 𝑡) for each timestep
and sum them together.

• There will be variance between the gradient estimates of different
trajectories (i.e., ∇𝜃𝐽 𝜃 will be different for each trajectory)

• Compute mean variance between same elements of different
gradients.

• Value of each state is average discounted returns from that state
• Key Point: What happens to mean and variance of gradients when

baseline function (V) is added?

REINFORCE

What if 𝜃 is the output of a
neural network?

How to compute:
𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)?

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

REINFORCE

What if 𝜃 is the output of a
neural network?

How to compute:
𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)?

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Compute ln 𝜋𝜃(𝑎𝑡|𝑠𝑡) in gradient tape context.

REINFORCE

What if 𝜃 is the output of a
neural network?

How to compute:
𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)?

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Compute ln 𝜋𝜃(𝑎𝑡|𝑠𝑡) in gradient tape context.

But also, remember, you have to perform gradient ASCENT.
If an optimizer minimizes by default, you can use −∇𝜃𝐽(𝜃)

REINFORCE Variance

Results on Cartpole
Image Source: https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57

If we could calculate ∇𝜃𝐽 𝜃 exactly
(not just for single trajectory/sample),
then Policy Gradient would be a great
algorithm! (with some minor flaws)

Actor-Critic Methods

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]
Variance of Returns is
always a problem…

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Actor-Critic Methods learn an approximation of 𝐺𝑡

Variance of Returns is
always a problem…

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Actor-Critic Methods learn an approximation of 𝐺𝑡
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼[𝐺𝑡]

Variance of Returns is
always a problem…

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Actor-Critic Methods learn an approximation of 𝐺𝑡
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼[𝐺𝑡]

Variance of Returns is
always a problem…

𝑉 𝑠𝑡 = 𝔼[𝐺𝑡] as well, but
technically it’s not a critic
function. Critic functions
critique actions.

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Actor-Critic Methods learn an approximation of 𝐺𝑡
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼[𝐺𝑡]

∇𝜃𝐽 𝜃 = 𝔼[

𝑡=0

𝑇

𝑄𝜋𝜃(𝑠𝑡 , 𝑎𝑡) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Variance of Returns is
always a problem…

𝑉 𝑠𝑡 = 𝔼[𝐺𝑡] as well, but
technically it’s not a critic
function. Critic functions
critique actions.

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Actor (policy): Takes actions

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Actor (policy): Takes actions Critic: Scores the action

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Actor (policy): Takes actions Critic: Scores the action

That’s not even
how that piece

moves, Q(s,a)=-5

Initialize 𝜋𝜃, 𝑄𝑤 , 𝛼𝜃 , 𝛼𝑤

Repeat forever:
 Take action 𝑎, get new state 𝑠′ and reward r
 Sample next action 𝑎′~𝜋𝜃(𝑎|𝑠)

 update 𝜃 ← 𝜃 + 𝛼𝜃𝑄𝑤 𝑠, 𝑎 ∇𝜃 ln 𝜋𝜃(𝑎|𝑠)

 Calculate TD Error: 𝛿 = 𝑟 + 𝛾𝑄𝑤 𝑠′, 𝑎′ − 𝑄𝑤(𝑠, 𝑎)

 update 𝑤 ← 𝑤 + 𝛼𝑤𝛿∇𝑤𝑄𝑤(𝑠, 𝑎)

 𝑎 ← 𝑎′, 𝑠 ← 𝑠′

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Policy network has parameters 𝜃
Q network has parameters w

Initialize 𝜋𝜃, 𝑄𝑤 , 𝛼𝜃 , 𝛼𝑤

Repeat forever:
 Take action 𝑎, get new state 𝑠′ and reward r
 Sample next action 𝑎′~𝜋𝜃(𝑎|𝑠)

 update 𝜃 ← 𝜃 + 𝛼𝜃𝑄𝑤 𝑠, 𝑎 ∇𝜃 ln 𝜋𝜃(𝑎|𝑠)

 Calculate TD Error: 𝛿 = 𝑟 + 𝛾𝑄𝑤 𝑠′, 𝑎′ − 𝑄𝑤(𝑠, 𝑎)

 update 𝑤 ← 𝑤 + 𝛼𝑤𝛿∇𝑤𝑄𝑤(𝑠, 𝑎)

 𝑎 ← 𝑎′, 𝑠 ← 𝑠′

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Like Q-learning and REINFORCE at the same time

Policy network has parameters 𝜃
Q network has parameters w

Variations on a Theme…

Source: https://en.wikipedia.org/wiki/Actor-critic_algorithm

(Wikipedia uses 𝑅𝑡 instead of 𝐺𝑡)How to estimate 𝐽 𝜃

https://en.wikipedia.org/wiki/Actor-critic_algorithm

Actor-Critic Networks

Actor

Critic

State

actions

Value

Actor-Critic Networks

Actor-CriticState
actions

Value

Just make sure you use the correct activation function for the different outputs

Deep Q-Learning Revisited

Compute TD-Error: 𝛿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Loss Function: 𝐿 = 𝛿2

Update model with Gradient Descent

Deep Q-Learning Revisited

Compute TD-Error: 𝛿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Loss Function: 𝐿 = 𝛿2

Update model with Gradient Descent

Q-Learning uses:
𝛿 = 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Actor-Critic Uses:
𝛿 = 𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 (𝑠, 𝑎)

Deep Q-Learning Revisited

Compute TD-Error: 𝛿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Loss Function: 𝐿 = 𝛿2

Update model with Gradient Descent

Q-Learning uses:
𝛿 = 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Actor-Critic Uses:
𝛿 = 𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 (𝑠, 𝑎)

Q-Learning is learning Optimal Q-values

Actor-Critic is learning the Q-values for
following a specific policy 𝑄𝜋

On-Policy Vs. Off-Policy Learning

RL algorithms collect experiences and learn from these
experiences

On-Policy Algorithms have to collect experiences with the policy
they are learning

Off-Policy Algorithms can use any policy to collect experiences

DQNs Are Off-Policy

In Q-Learning, we typically collect experiences using an 𝜖-greedy policy
in training

With probability 𝜖, take random action.
Else, take action argmax𝑎 𝑄(𝑠, 𝑎)

At test time, we should take the best actions, not the 𝜖-greedy actions
argmax𝑎 𝑄(𝑠, 𝑎)

DQNs Are Off-Policy

In Q-Learning, we typically collect experiences using an 𝜖-greedy policy
in training

With probability 𝜖, take random action.
Else, take action argmax𝑎 𝑄(𝑠, 𝑎)

At test time, we should take the best actions, not the 𝜖-greedy actions
argmax𝑎 𝑄(𝑠, 𝑎)

These are different policies! DQNs can be trained with any data collection policy at training time

Initialize 𝜋𝜃, 𝑄𝑤 , 𝛼𝜃 , 𝛼𝑤

Repeat forever:
 Take action 𝑎, get new state 𝑠′ and reward r
 Sample next action 𝑎′~𝜋𝜃(𝑎|𝑠)

 update 𝜃 ← 𝜃 + 𝛼𝜃𝑄𝑤 𝑠, 𝑎 ∇𝜃 ln 𝜋𝜃(𝑎|𝑠)

 Calculate TD Error: 𝛿 = 𝑟 + 𝛾𝑄𝑤 𝑠′, 𝑎′ − 𝑄𝑤(𝑠, 𝑎)

 update 𝑤 ← 𝑤 + 𝛼𝑤𝛿∇𝑤𝑄𝑤(𝑠, 𝑎)

 𝑎 ← 𝑎′, 𝑠 ← 𝑠′

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

On Policy: Have to take actions according to 𝜋𝜃

On-Policy vs Off-Policy Learning

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:
• Can learn from any policy

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:
• Can learn from any policy
• More likely to learn an optimal policy

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:
• Can learn from any policy
• More likely to learn an optimal policy
Disadvantages of Off-Policy Learning:

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:
• Can learn from any policy
• More likely to learn an optimal policy
Disadvantages of Off-Policy Learning:
• Slower…

For the Record: On-Policy Q-Learning (SARSA)

There is an On-Policy Q-learning algorithm:

𝛿 = 𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Why is it called SARSA?
𝛿 = 𝛾𝑄 𝑠′, 𝑎′ + 𝑟 − 𝑄 (𝑠, 𝑎)

Off-Policy Learning

Most of the time in RL, collecting
the data is computationally
expensive.

So far, we’ve looked at an example,
learned from it, and discarded it.

In all our other problems, we
always learned from data multiple
times (i.e., epochs)

Off-Policy Learning

Most of the time in RL, collecting
the data is computationally
expensive.

So far, we’ve looked at an example,
learned from it, and discarded it.

In all our other problems, we
always learned from data multiple
times (i.e., epochs)

Off-Policy Learning

Most of the time in RL, collecting
the data is computationally
expensive.

So far, we’ve looked at an example,
learned from it, and discarded it.

In all our other problems, we
always learned from data multiple
times (i.e., epochs)

Maybe we shouldn’t throw away useful
data immediately…

Experience Replay and Replay Buffers

Keep a memory of experiences
(state, action, reward,
next_state)

As you collect new
experiences, remove oldest
experiences from buffer

To train model, sample batch
of data from buffer

On-Policy Learning

On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

No! Data in the buffer was collected with
an older policy and we can only learn on
experiences collected using the current
policy…

On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

No! Data in the buffer was collected with
an older policy and we can only learn on
experiences collected using the current
policy…

But what if we actually could…

Off-Policy Policy Gradient:
Data collected under policy 𝛽(𝑎|𝑠) (i.e., older version of policy)

We can re-weight our gradient according to the old policy:

𝜌 =
𝜋 𝑎 𝑠

𝛽 𝑎 𝑠

∇𝜃𝐽 𝜃 =

𝑠,𝑎 ∈𝑏𝑎𝑡𝑐ℎ

𝜌 ⋅ 𝑄𝜋 𝑠, 𝑎 ∇𝜃ln 𝜋(𝑠, 𝑎)

Off-Policy Actor Critic: https://arxiv.org/pdf/1205.4839

Actor-Critic with Importance Sampling

But what if we actually could…

Off-Policy Policy Gradient:
Data collected under policy 𝛽(𝑎|𝑠) (i.e., older version of policy)

We can re-weight our gradient according to the old policy:

𝜌 =
𝜋 𝑎 𝑠

𝛽 𝑎 𝑠

∇𝜃𝐽 𝜃 =

𝑠,𝑎 ∈𝑏𝑎𝑡𝑐ℎ

𝜌 ⋅ 𝑄𝜋 𝑠, 𝑎 ∇𝜃ln 𝜋(𝑠, 𝑎)

Off-Policy Actor Critic: https://arxiv.org/pdf/1205.4839

Actor-Critic with Importance Sampling Store action probabilities 𝛽 𝑎 𝑠 in replay buffer

Trust Region Policy Optimization

Insight: the reason that variance is bad is that it can cause large updates to 𝜋𝜃

Add a constraint to how large of an update can be applied:
KL-Divergence between old and new policy must be below some hyperparameter Δ

𝐷𝐾𝐿(𝜋𝜃
𝑛𝑒𝑤(⋅ |𝑠)| 𝜋𝜃

𝑜𝑙𝑑 ⋅ 𝑠 ≤ Δ

Paper: https://arxiv.org/pdf/1502.05477

𝐽𝑇𝑅𝑃𝑂 𝜃 = 𝔼 𝜌 ⋅ (𝑟 + 𝛾𝑉𝜋𝑜𝑙𝑑
(𝑠′) − 𝑉𝜋old

𝑠]

𝜌 =
𝜋𝑛𝑒𝑤 𝑎 𝑠

𝜋𝑜𝑙𝑑 𝑎 𝑠

Proximal Policy Optimization

TRPO is complicated…

What if instead of constraining the update with KL-Divergence, we
clipped the update if it’s too big…

𝜌𝑐𝑙𝑖𝑝𝑝𝑒𝑑 = 𝑐𝑙𝑖𝑝[
𝜋𝑛𝑒𝑤 𝑎 𝑠

𝜋𝑜𝑙𝑑 𝑎 𝑠
, 1 − 𝜖, 1 + 𝜖]

𝐽𝑃𝑃𝑂 𝜃 = 𝔼[min(𝜌𝑐𝑙𝑖𝑝𝑝𝑒𝑑 ⋅ 𝑟 + 𝛾𝑉𝜋𝑜𝑙𝑑
𝑠′ − 𝑉𝜋𝑜𝑙𝑑

𝑠 , 𝜌 𝑟 + 𝛾𝑉𝜋𝑜𝑙𝑑
𝑠′ − 𝑉𝜋𝑜𝑙𝑑

𝑠]

Spinning Up PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html

https://spinningup.openai.com/en/latest/algorithms/ppo.html

PPO

PPO is (basically) State-Of-The-Art (SOTA)

Provides fast, sample-efficient, and stable training

PPO

PPO is (basically) State-Of-The-Art (SOTA)

Provides fast, sample-efficient, and stable training

PPO: OpenAI5

PPO

Final phase of training ChatGPT

	Slide 1
	Slide 2: Goals for Today
	Slide 3: Goals for Today
	Slide 4
	Slide 5: Multi-Arm Bandits
	Slide 6: Multi-Arm Bandits
	Slide 7: Multi-Arm Bandits
	Slide 8: Multi-Arm Bandits
	Slide 9: Multi-Arm Bandits
	Slide 10: Multi-Arm Bandits
	Slide 11: Multi-Arm Bandits
	Slide 12: Multi-Arm Bandits
	Slide 13: Multi-Arm Bandits
	Slide 14: Multi-Arm Bandits
	Slide 15: Multi-Arm Bandits
	Slide 16: Multi-Arm Bandits
	Slide 17: Multi-Arm Bandits
	Slide 18: Policy Gradient on Multi-Arm Bandits
	Slide 19: Policy Gradient on Multi-Arm Bandits
	Slide 20: Policy Gradient on Multi-Arm Bandits
	Slide 21: Policy Gradient on Multi-Arm Bandits
	Slide 22: Policy Gradient on Multi-Arm Bandits
	Slide 23: Policy Gradient on Multi-Arm Bandits
	Slide 24: Policy Gradient on Multi-Arm Bandits
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: RL Conceptual Question Hints
	Slide 34: RL Conceptual Question Hints
	Slide 35: RL Conceptual Question Hints
	Slide 36: RL Conceptual Question Hints
	Slide 37: RL Conceptual Question Hints
	Slide 38: RL Conceptual Question Hints
	Slide 39: REINFORCE
	Slide 40: REINFORCE
	Slide 41: REINFORCE
	Slide 42: REINFORCE Variance
	Slide 43: Actor-Critic Methods
	Slide 44: Actor-Critic Methods
	Slide 45: Actor-Critic Methods
	Slide 46: Actor-Critic Methods
	Slide 47: Actor-Critic Methods
	Slide 48: Actor-Critic Methods
	Slide 49: Actor-Critic Methods
	Slide 50: Actor-Critic Methods
	Slide 51: Actor-Critic Algorithm: Learn Q and a. s
	Slide 52: Actor-Critic Algorithm: Learn Q and a. s
	Slide 53: Actor-Critic Algorithm: Learn Q and a. s
	Slide 54: Actor-Critic Algorithm: Learn Q and a. s
	Slide 55: Actor-Critic Algorithm: Learn Q and a. s
	Slide 56: Actor-Critic Algorithm: Learn Q and a. s
	Slide 57: Variations on a Theme…
	Slide 58: Actor-Critic Networks
	Slide 59: Actor-Critic Networks
	Slide 60: Deep Q-Learning Revisited
	Slide 61: Deep Q-Learning Revisited
	Slide 62: Deep Q-Learning Revisited
	Slide 63: On-Policy Vs. Off-Policy Learning
	Slide 64: DQNs Are Off-Policy
	Slide 65: DQNs Are Off-Policy
	Slide 66: Actor-Critic Algorithm: Learn Q and a. s
	Slide 67: On-Policy vs Off-Policy Learning
	Slide 68: On-Policy vs Off-Policy Learning
	Slide 69: On-Policy vs Off-Policy Learning
	Slide 70: On-Policy vs Off-Policy Learning
	Slide 71: On-Policy vs Off-Policy Learning
	Slide 72: On-Policy vs Off-Policy Learning
	Slide 73: On-Policy vs Off-Policy Learning
	Slide 74: On-Policy vs Off-Policy Learning
	Slide 75: On-Policy vs Off-Policy Learning
	Slide 76: On-Policy vs Off-Policy Learning
	Slide 77: For the Record: On-Policy Q-Learning (SARSA)
	Slide 78: Off-Policy Learning
	Slide 79: Off-Policy Learning
	Slide 80: Off-Policy Learning
	Slide 81: Experience Replay and Replay Buffers
	Slide 82: On-Policy Learning
	Slide 83: On-Policy Learning
	Slide 84: On-Policy Learning
	Slide 85: On-Policy Learning
	Slide 86: But what if we actually could…
	Slide 87: But what if we actually could…
	Slide 88: Trust Region Policy Optimization
	Slide 89: Proximal Policy Optimization
	Slide 90: PPO
	Slide 91: PPO
	Slide 92: PPO: OpenAI5
	Slide 93: PPO

