
Deep
Learning

Eric Ewing

CSCI 1470

Monday
4/14/25

Day 31: DQNs and Policy Gradient Methods

Lunar Lander, Gymnasium

Terminology Review

MDP <S, A, R, P, 𝛾>
S: States
A: Actions
R: rewards
P: Transition Function
𝛾: Discount Factor

Returns: 𝐺𝑡 = σ𝑖=0
𝑇−𝑡 𝛾𝑖𝑟𝑖+𝑡

Value function: 𝑉 𝑠𝑡 = 𝔼 𝐺𝑡

Q-Function: 𝑄 𝑠𝑡, 𝑎𝑡 = 𝔼𝑠′~𝑇 𝑠𝑡,𝑎𝑡
[𝑉(𝑠′)]

Q-Learning Review

Q-learning:
Maintain estimates of Q(s, a) for all (s, a) pairs

 Collect experiences, update Q estimates with:
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

0 = [𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′] − 𝑄(𝑠, 𝑎)

Current estimate
Learning rate

Error in estimate (Temporal
Difference Error)

Want this relationship to hold

Deep Q-Learning

• Approximate Q-values with a neural network

Deep Q-Learning

• Approximate Q-values with a neural network
• Always needed a loss function with neural networks before…

Deep Q-Learning

• Approximate Q-values with a neural network
• Always needed a loss function with neural networks before…
• Can we come up with a loss function here?

Deep Q-Learning

• Approximate Q-values with a neural network
• Always needed a loss function with neural networks before…
• Can we come up with a loss function here?
• We want this equality to hold: 0 = [𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′] − 𝑄(𝑠, 𝑎)

Deep Q-Learning

• Approximate Q-values with a neural network
• Always needed a loss function with neural networks before…
• Can we come up with a loss function here?
• We want this equality to hold: 0 = [𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′] − 𝑄(𝑠, 𝑎)

• If we can force [𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′] − 𝑄(𝑠, 𝑎) to be close to 0, we
will have good approximations of Q-values

𝐿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

2

Q-Learning
How to update tabular Q-
learning to be deep Q-learning

Can’t just update outputs of a NN directly…
Instead, compute loss and run a step of SGD

𝐿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

2

Deep-Q Network

State: s Deep Q-Network

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎𝑛)

𝑄(𝑠, 𝑎2)

…

Deep Q-Networks (DQNs):
1. Take in a state
2. Return Q-values for each action

What activation function should
the final layer use?

Deep-Q Learning

Initialize DQN to approximate Q

Maintain estimates of Q(s, a) for all (s, a) pairs

 Collect experiences, update Q estimates with:

 Compute 𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

 update 𝜃 with SGD on Loss function

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

We do not include ∇Q𝜃(s′, a′) when calculating ∇𝜃𝐿, we treat 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ as a constant:

Target
Estimate

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

We do not include ∇Q𝜃(s′, a′) when calculating ∇𝜃𝐿, we treat 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ as a constant:

1. max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ is not differentiable

Target
Estimate

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

We do not include ∇Q𝜃(s′, a′) when calculating ∇𝜃𝐿, we treat 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ as a constant:

1. max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ is not differentiable

2. ∇Q𝜃(s′, a′) would tell us how to update the target to match our current estimate (that’s
backwards)

Target
Estimate

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate

If we included the target gradient, it would be like trying to update our estimate
to fit our target AND update our target to fit our estimate at the same time

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate

If we included the target gradient, it would be like trying to update our estimate
to fit our target AND update our target to fit our estimate at the same time

Using only the gradient of the estimate helps with stationarity

Q-Values to Policy

What do we do after we learn Q? We need to turn them into a policy.

For a given state, take the action associated with the best Q-value.

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎)

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…

What should the
activation function be
for the final layer?

How do we train a policy network?

How do we train a policy network?

Need to find an appropriate loss function.

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0)

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0)

How can we maximize 𝑉(𝑠0)?

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Probability of a
trajectory occurring

Returns of a specific
trajectory

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a
trajectory occurring

Returns of a specific
trajectory

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a
trajectory occurring

Returns of a specific
trajectory

State transition
Probability

Probability of taking an
action for a given state

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a
trajectory occurring

Returns of a specific
trajectory

State transition
Probability

Probability of taking an
action for a given state

Sum over all possible
trajectories

Log-Derivative Trick

We can rewrite the derivative of a function using the derivative of
the natural log function:

∇ ln 𝑓(𝑥) =
∇f 𝑥

𝑓 𝑥

∇𝑓 𝑥 = 𝑓 𝑥 ∇ln f x

When applied to Pr 𝜏 𝜃 :
∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

Log Probability Trick

This gradient term is
what we want to
calculate

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

This gradient term is
what we want to
calculate

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is
what we want to
calculate

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is
what we want to
calculate

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is
what we want to
calculate

Log of product -> sum of logs

Log of product -> sum of logs

Derivative of sum -> sum of derivative

Gradient of a trajectory

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

State transition function
does not depend on 𝜃!

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏) Our Objective

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

Our Objective

Take the gradient

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

Our Objective

Take the gradient

Log-Derivative Trick

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃𝐽 𝜃 = ෍

𝜏

[Pr 𝜏|𝜃 𝐺 𝜏 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Our Objective

Take the gradient

Log-Derivative Trick

Gradient of a Trajectory

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃𝐽 𝜃 = ෍

𝜏

[Pr 𝜏|𝜃 𝐺 𝜏 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Our Objective

Take the gradient

Log-Derivative Trick

Gradient of a Trajectory

Convert back to Expectation

Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

We will never be able to sum over all possible trajectories…
How do we get around this?

Direction to move in to increase
probability of trajectoryBigger step if better returns

Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

We will never be able to sum over all possible trajectories…
How do we get around this?

Sampling!
1. Collect n trajectories following policy 𝜋𝜃

2. Pr 𝜏 𝜃 = 1/𝑛 for each trajectory
3. Calculate the total return for each trajectory 𝐺(𝜏)

Direction to move in to increase
probability of trajectoryBigger step if better returns

Reward-To-Go Policy Gradient

You can also do the policy gradient derivation such that the gradient
does not depend on 𝐺0, but on 𝐺𝑡

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Or

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝑄(𝑠𝑡 , 𝑎𝑡) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

REINFORCE (Policy Gradient Learning)

Source: Sutton and Barto, Reinforcement Learning: An Introduction

REINFORCE (Policy Gradient Learning)

Why is the update
adding the gradient
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction

REINFORCE (Policy Gradient Learning)

Why is the update
adding the gradient
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction

When 𝜋 is based on a softmax, ∇𝜃 ln 𝜋𝜃(𝑎|𝑠) is
actually easy to compute by hand using log rules
and the fact that ln 𝑒𝑥 = 𝑥

Variance of REINFORCE

Variance of REINFORCE

REINFORCE has high variance

Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the
returns of a single episode

Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the
returns of a single episode

We can reduce variance by
collecting more than one
trajectory

Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the
returns of a single episode

We can reduce variance by
collecting more than one
trajectory

Or…

Baseline Functions

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Baseline functions can reduce the variance of the gradient estimate

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Baseline functions can reduce the variance of the gradient estimate

The value function V(s) is the ideal baseline function

Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Pseudocode uses SGD, but you can just as easily use any
other optimizer (e.g., Adam)

Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Gradient of L =
1

2
𝛿^2

Pseudocode uses SGD, but you can just as easily use any
other optimizer (e.g., Adam)

Extra Material

Sutton and Barto: Policy Gradient methods chapter 13
http://www.incompleteideas.net/book/RLbook2020.pdf

Spinning up policy gradient:
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

http://www.incompleteideas.net/book/RLbook2020.pdf
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

Derivation: https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/

Derivation of REINFORCE w/ Baseline Function

	Slide 1
	Slide 2: Terminology Review
	Slide 3: Q-Learning Review
	Slide 4: Deep Q-Learning
	Slide 5: Deep Q-Learning
	Slide 6: Deep Q-Learning
	Slide 7: Deep Q-Learning
	Slide 8: Deep Q-Learning
	Slide 9: Q-Learning
	Slide 10: Deep-Q Network
	Slide 11: Deep-Q Learning
	Slide 12: (non-)Stationarity in RL
	Slide 13: (non-)Stationarity in RL
	Slide 14: (non-)Stationarity in RL
	Slide 15: (non-)Stationarity in RL
	Slide 16: (non-)Stationarity in RL
	Slide 17: (non-)Stationarity in RL
	Slide 18: Q-Values to Policy
	Slide 19: Policies
	Slide 20: Policies
	Slide 21: Policies
	Slide 22: How do we train a policy network?
	Slide 23: How do we train a policy network?
	Slide 24: How do we train a policy network?
	Slide 25: How do we train a policy network?
	Slide 26: How do we train a policy network?
	Slide 27: How do we train a policy network?
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Log-Derivative Trick
	Slide 36: Log Probability Trick
	Slide 37: Log Probability Trick
	Slide 38: Log Probability Trick
	Slide 39: Log Probability Trick
	Slide 40: Log Probability Trick
	Slide 41: Log Probability Trick
	Slide 42: Gradient of a trajectory
	Slide 43: Policy Gradient Derivation
	Slide 44: Policy Gradient Derivation
	Slide 45: Policy Gradient Derivation
	Slide 46: Policy Gradient Derivation
	Slide 47: Policy Gradient Derivation
	Slide 48: Policy Gradient
	Slide 49: Policy Gradient
	Slide 50: Reward-To-Go Policy Gradient
	Slide 51: REINFORCE (Policy Gradient Learning)
	Slide 52: REINFORCE (Policy Gradient Learning)
	Slide 53: REINFORCE (Policy Gradient Learning)
	Slide 54: Variance of REINFORCE
	Slide 55: Variance of REINFORCE
	Slide 56: Variance of REINFORCE
	Slide 57: Variance of REINFORCE
	Slide 58: Variance of REINFORCE
	Slide 59: Baseline Functions
	Slide 60: Baseline Functions
	Slide 61: Baseline Functions
	Slide 62: Baseline Functions
	Slide 63: Baseline Functions
	Slide 64: Baseline Functions
	Slide 65: REINFORCE with Baseline
	Slide 66: REINFORCE with Baseline
	Slide 67: Extra Material
	Slide 68: Derivation of REINFORCE w/ Baseline Function

