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Terminology Review

MDP <S, A, R, P, 𝛾>
S: States
A: Actions
R: rewards
P: Transition Function
𝛾: Discount Factor

Returns: 𝐺𝑡 = σ𝑖=0
𝑇−𝑡 𝛾𝑖𝑟𝑖+𝑡

Value function: 𝑉 𝑠𝑡 = 𝔼 𝐺𝑡

Q-Function: 𝑄 𝑠𝑡, 𝑎𝑡 = 𝔼𝑠′~𝑇 𝑠𝑡,𝑎𝑡
[𝑉(𝑠′)]



Q-Learning Review

Q-learning:
Maintain estimates of Q(s, a) for all (s, a) pairs

 Collect experiences, update Q estimates with: 
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′  − 𝑄(𝑠, 𝑎)]

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

0 = [𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ ]  − 𝑄(𝑠, 𝑎)

Current estimate
Learning rate

Error in estimate (Temporal 
Difference Error)

Want this relationship to hold
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Deep Q-Learning

• Approximate Q-values with a neural network
• Always needed a loss function with neural networks before…
• Can we come up with a loss function here?
• We want this equality to hold: 0 = [𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′ ]  − 𝑄(𝑠, 𝑎)

• If we can force [𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ ]  − 𝑄(𝑠, 𝑎) to be close to 0, we 
will have good approximations of Q-values

𝐿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

2



Q-Learning
How to update tabular Q-
learning to be deep Q-learning

Can’t just update outputs of a NN directly…
Instead, compute loss and run a step of SGD

𝐿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎
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Deep-Q Network

State: s Deep Q-Network

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎𝑛)

𝑄(𝑠, 𝑎2)

…

Deep Q-Networks (DQNs):
1. Take in a state
2. Return Q-values for each action

What activation function should 
the final layer use?



Deep-Q Learning

Initialize DQN to approximate Q

Maintain estimates of Q(s, a) for all (s, a) pairs

 Collect experiences, update Q estimates with: 

  Compute 𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

  update 𝜃 with SGD on Loss function



(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎  to be like our estimate for the next timestep 

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate
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(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎  to be like our estimate for the next timestep 

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

We do not include ∇Q𝜃(s′, a′) when calculating ∇𝜃𝐿, we treat 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  as a constant:

1. max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  is not differentiable

2. ∇Q𝜃(s′, a′) would tell us how to update the target to match our current estimate (that’s 
backwards)

Target
Estimate
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(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎  to be like our estimate for the next timestep 

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate

If we included the target gradient, it would be like trying to update our estimate 
to fit our target AND update our target to fit our estimate at the same time

Using only the gradient of the estimate helps with stationarity



Q-Values to Policy

What do we do after we learn Q? We need to turn them into a policy.

For a given state, take the action associated with the best Q-value.

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎)
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State: s Policy Network
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Policies

Why learn Q-values first and turn them into a policy? Why not just 
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…

What should the 
activation function be 
for the final layer?



How do we train a policy network?



How do we train a policy network?

Need to find an appropriate loss function.



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0 )



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0 )

How can we maximize 𝑉(𝑠0)?
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Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a 
trajectory occurring

Returns of a specific 
trajectory

State transition 
Probability

Probability of taking an 
action for a given state

Sum over all possible 
trajectories



Log-Derivative Trick

We can rewrite the derivative of a function using the derivative of 
the natural log function:

∇ ln 𝑓(𝑥) =
∇f 𝑥

𝑓 𝑥

∇𝑓 𝑥 = 𝑓 𝑥 ∇ln f x

When applied to Pr 𝜏 𝜃 :
∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)



Log Probability Trick
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calculate
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Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is 
what we want to 
calculate

Log of product -> sum of logs

Log of product -> sum of logs

Derivative of sum -> sum of derivative



Gradient of a trajectory

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

State transition function 
does not depend on 𝜃!



Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏) Our Objective



Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

Our Objective

Take the gradient



Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

Our Objective

Take the gradient

Log-Derivative Trick



Policy Gradient Derivation

Putting it all back together:
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Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃𝐽 𝜃 = ෍

𝜏

[Pr 𝜏|𝜃 𝐺 𝜏 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Our Objective

Take the gradient

Log-Derivative Trick

Gradient of a Trajectory

Convert back to Expectation



Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

We will never be able to sum over all possible trajectories…
How do we get around this?

Direction to move in to increase 
probability of trajectoryBigger step if better returns



Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

We will never be able to sum over all possible trajectories…
How do we get around this?

Sampling! 
1. Collect n trajectories following policy 𝜋𝜃

2. Pr 𝜏 𝜃 = 1/𝑛 for each trajectory 
3. Calculate the total return for each trajectory 𝐺(𝜏)

Direction to move in to increase 
probability of trajectoryBigger step if better returns



Reward-To-Go Policy Gradient

You can also do the policy gradient derivation such that the gradient 
does not depend on 𝐺0, but on 𝐺𝑡

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Or

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝑄(𝑠𝑡 , 𝑎𝑡) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]



REINFORCE (Policy Gradient Learning)

Source: Sutton and Barto, Reinforcement Learning: An Introduction
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REINFORCE (Policy Gradient Learning)

Why is the update 
adding the gradient 
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction

When 𝜋 is based on a softmax, ∇𝜃 ln 𝜋𝜃(𝑎|𝑠) is 
actually easy to compute by hand using log rules 
and the fact that ln 𝑒𝑥 = 𝑥
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Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the 
returns of a single episode

We can reduce variance by 
collecting more than one 
trajectory

Or…
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Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected 
gradient

A baseline function 𝑏 𝑠  is any function that depends only on the state 
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]
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Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected 
gradient

A baseline function 𝑏 𝑠  is any function that depends only on the state 
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Baseline functions can reduce the variance of the gradient estimate

The value function V(s) is the ideal baseline function



Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Pseudocode uses SGD, but you can just as easily use any 
other optimizer (e.g., Adam)



Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Gradient of L =
1

2
𝛿^2

Pseudocode uses SGD, but you can just as easily use any 
other optimizer (e.g., Adam)



Extra Material

Sutton and Barto: Policy Gradient methods chapter 13 
http://www.incompleteideas.net/book/RLbook2020.pdf 

Spinning up policy gradient: 
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

http://www.incompleteideas.net/book/RLbook2020.pdf
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html


Derivation:  https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/

Derivation of REINFORCE w/ Baseline Function
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