
Deep Learning

Eric Ewing

CSCI 1470

Friday
,
4/11/25

Day 30: Tabular Methods of RL

Space Invaders, Atari

RL vs. Other Deep Learning

• This class has mostly focused on data (e.g., framing as supervised or
unsupervised problem, adapting to new modalities) and architectures
• In RL, the data and architectures matter less than the algorithms we use

to update our networks
• Sometimes RL algorithms compute the gradients directly
• Determining the proper loss function is harder than just choosing between MSE or

Cross Entropy.

More time on the blackboard than other topics

Markov Decision Process (MDP) Review

Consist of:
• States: Set of all possible ways the world can be
• Actions: Set of all actions the agent can take
• Reward: Function mapping states to reward values
• Transitions: Function mapping (state, action) pairs to a

distribution over next states.

Seek a policy 𝜋 that maps states to actions

Gamma

One more term to add to MDPs: a discount factor 𝛾 ∈ [0, 1]

Some MDPs have no terminal state (or otherwise can have an agent
take infinitely many actions)

We care about the total reward the agent gets, how do we reason
about that when we need to sum infinitely many things?

The discount factor is a helpful mathematical trick: Each
step into the future, we care about reward a little less

𝑟! + 𝛾𝑟!"# + 𝛾$𝑟!"$ + ⋯This sum is never infinite if r is bounded

Key Terms
Episode: (For Episodic MDPs with defined start and terminal states) a single run through of the
MDP from a start state to a terminal state (or until a cutoff time T)

Trajectory: state, action, reward for every timestep in an episode
𝜏 =(𝑠!, 𝑎!, 𝑟!, … , 𝑠", 𝑎", 𝑟")

Return: Cumulative discounted rewards from timestep t for a single episode
𝐺# = 𝑟# + 𝛾𝑟#$% + 𝛾&𝑟#$& +⋯

𝐺# =-
'(!

")#

𝛾'𝑟'$#

The return 𝐺! (sometimes just denoted 𝐺) is total discounted reward of the entire episode

Breakout Example

• Episode: From start of game until player loses (or wins)
• Trajectory: list of all states, actions, and rewards from that

episode
• Return: Cumulative discounted reward of that trajectory (if 𝛾 = 1,

then it is the sum of all rewards)

Key Terms

Value of a state: the expected returns from a state
𝑉 𝑠. = 𝔼[𝐺.]

Q-Values: The expected returns of being in a state and taking an
action

𝑄 𝑠. , 𝑎. = 𝔼/!~1 /",2" [𝑉(𝑠′)]

Value Function

𝑉3 𝑠. = 𝔼[𝐺.]
𝑉3 𝑠. = 𝔼	[∑45617. 𝛾4𝑟48.]

𝑉3 𝑠. = 𝑟. + 𝛾 ⋅ 𝔼	[∑45917. 𝛾4𝑟48.]

𝑉3 𝑠. = 𝑟. + 𝛾 8
	/!∈<

Pr 𝑠= 𝑠. , 𝑎. 𝑉3(𝑠=)

We can the value function as a recursive formula:
How good it is to be in a state is the immediate reward
for being in that state + the expected returns for future states

A value function is defined
for a specific policy 𝜋!

(If you have a bad policy, you
expect your values to be
smaller)

This is called policy evaluation

Value Function → Policy

What if we don’t have a policy already and want to find one?
If we already have a value function:

For every state
 iterate over all possible actions
 calculate the expected value if the agent takes that action
 𝑄 𝑠, 𝑎 = ∑/! Pr(𝑠=|𝑠, 𝑎) [𝑅 𝑠= + 𝛾𝑉 𝑠=]
 set 𝜋 𝑠 to be the action with highest expected Q-value

This is called policy improvement

Value Iteration

1. Start with a random Value function V
2. Run Policy Improvement to determine best actions at each state
3. Run Policy Estimation to determine the new values with the

updated policy
4. Repeat

Value Iteration

Repeatedly apply Policy Estimation and Policy improvement steps
Run until convergence (i.e., estimates of V no longer changes)

Tabular Value Iteration

Value iteration is typically a dynamic programming algorithms
A table of values is constructed (one row for each state) and then
updated according to the Bellman Equation:

𝑉 𝑠 = 𝑟 + 𝛾max
2

8
/=

Pr 𝑠= 𝑠, 𝑎 𝑉(𝑠=)

Q-Learning

Q-Learning is our first actual RL algorithm
- Reinforcement Learning algorithms actually simulate episodes,
gather trajectories, and learn from experiences.
- Collect experiences (i.e.: (𝑠, 𝑎, 𝑟, 𝑠’) tuples)

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
2=
𝑄 𝑠′, 𝑎′

Q-Learning

Q-Learning is our first actual RL algorithm
- Reinforcement Learning algorithms actually simulate episodes,
gather trajectories, and learn from experiences.
- Collect experiences (i.e.: (𝑠, 𝑎, 𝑟, 𝑠’) tuples)

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
2=
𝑄 𝑠′, 𝑎′

Important:
How do we collect experiences (i.e., how do we select what action to take)?

How do we update our estimates of Q?

Collecting Experiences

What if we always took the action go-right?
• We’d update our estimates for go-right, but never go-left

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
%&
𝑄 𝑠′, 𝑎′

What if we take uniform random actions?
• We’d update estimates for both right and

left, but we’d be unlikely to get too far into
the game

What if we find a happy middle ground between fully deterministic and fully random?
• With probability 𝜖 take a random action
• With probability 1 − 𝜖 take the best action (action with highest Q-value)

𝜖-greedy Algorithm for balancing exploration in RL

Updating estimates of Q-values

Q-learning:
Maintain	estimates	of	Q(s,	a)	for	all	(s,	a)	pairs
	 Collect	experiences,	update	Q	estimates	with:	

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑟 + 𝛾max
2!
𝑄 𝑠=, 𝑎= 	− 𝑄(𝑠, 𝑎)]

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
%&
𝑄 𝑠′, 𝑎′

0 = [𝑟 + 𝛾max
%&
𝑄 𝑠′, 𝑎′] 	− 𝑄(𝑠, 𝑎)

Current estimate
Learning rate

Error in estimate (Temporal
Difference Error)

Tabular Q-Learning

Where’s the Deep Learning part of this?

• Neural Networks are Function approximators and we have some
functions…
• 𝑉: 𝑆	 → 	ℝ
• 𝑄: 𝑆×𝐴	 → ℝ
• 𝜋: 𝑆	 → 𝐴

• Deep Reinforcement Learning seeks to approximate these
functions with neural networks

Deep Q-Learning

• Approximate Q-values with a neural network
• Always needed a loss function with neural networks before…
• Can we come up with a loss function here?
• We want this equality to hold: 0 = [𝑟 + 𝛾max

2=
𝑄 𝑠′, 𝑎′] 	− 𝑄(𝑠, 𝑎)

• If we can force [𝑟 + 𝛾max
2=
𝑄 𝑠′, 𝑎′] 	− 𝑄(𝑠, 𝑎) to be close to 0, we

will have good approximations of Q-values

𝐿 = 𝑟 + 𝛾max
%!

𝑄 𝑠&, 𝑎& − 𝑄 𝑠, 𝑎
$

Q-Learning
How to update tabular Q-
learning to be deep Q-learning

Can’t just update outputs of a NN directly…
Instead, compute loss and run a step of SGD

𝐿 = 𝑟 + 𝛾max
%!

𝑄 𝑠&, 𝑎& − 𝑄 𝑠, 𝑎
$

Recap

Important RL Notation: V, Q, G, 𝜋

Value Iteration

Q-Learning

Up Next: Deep-Q Learning tips, tricks,
and variants

