CSCI 1470

Eric Ewing

Monday, 1/27/25

Deep Learning

Day 3: Linear Regression, Perceptrons, and MNIST

Brown Al Safety Team It's BAIST.

Our mission is to mitigate large-scale risks from advanced AI through technical research and effective policy interventions.

Apply to our policy and technical programs or become a member at **BAIST.ai**

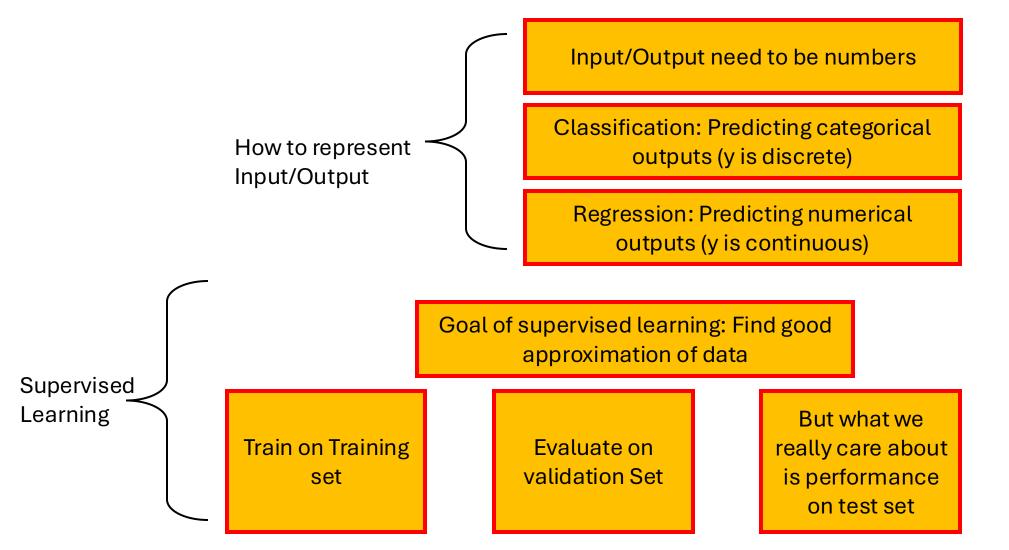
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-AI

 ${\tt research@deepseek.com}$

- Much less Supervised Fine Tuning (SFT) than previous models (e.g., GPT4)
- Uses Reinforcement Learning heavily (final part of this course)

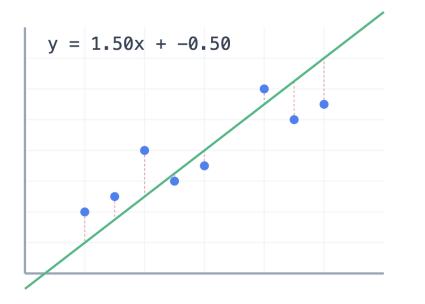
Key Ideas Review



Today's Goal: Learn about Perceptrons, the first building block of Neural Networks

- Optimization
- Perceptrons
- Introduction to MNIST

y = mx + b



With 1 input feature, 2 parameters

- m (slope)
- b (bias)

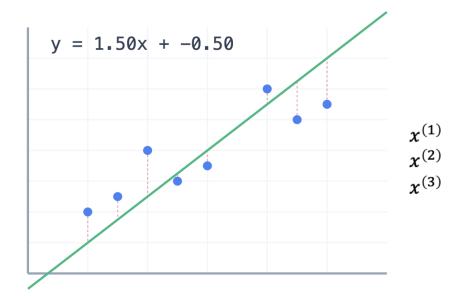
y = mx + b



	with Fillput leature, 2 parameters				
	- m (slope				
	- b(bias)				
Input Features		<u>Output Target</u>			
x_1	x_2	<i>x</i> ₃	У		
Temperature	Sunny?	Day of Week	Profit		
90	Yes	Sat	\$200		
80	No	Mon	\$91		
62	No	Wed	\$54		

With 1 input feature 2 narameters

y = mx + b



	- b(bias)	
	<u>Input F</u>	<u>eatures</u>
x_1	<i>x</i> ₂	x_{i}
Temperature	Sunny?	Day of
90	Yes	Sa
80	No	М
62	No	W

With 1 input feature, 2 parameters

 x_3

Day of Week

Sat

Mon

Wed

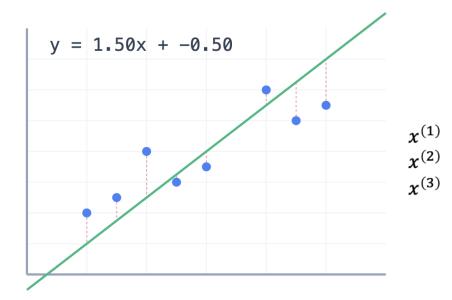
- m (slope)

Output Target x_4 y Constant Profit \$200 1 1 \$91

1

\$54

y = mx + b



With 1 input feature, 2 parameters

- m (slope)

 x_1

Temperature

90

80

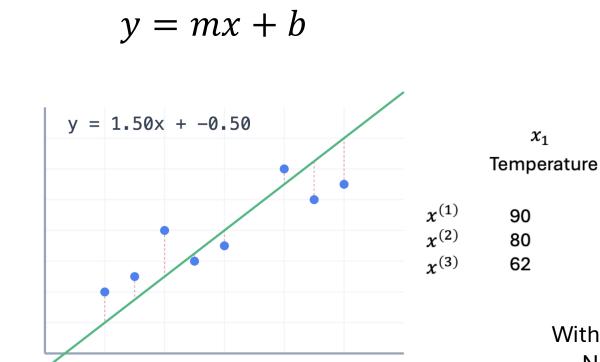
62

- b(bias)			
<u>Input F</u>	<u>eatures</u>		<u>Output Target</u>
x_2	x_3	x_4	У
Sunny?	Day of Week	Constant	Profit
Yes	Sat	1	\$200
No	Mon	1	\$91
No	Wed	1	\$54

With multiple input features:

- Need a weight parameter w_i for each feature x_i
- $y = x_1^{(i)} \cdot w_1 + x_2^{(i)} \cdot w_2^{(i)} + \dots + x_d^{(i)} \cdot w_d$
- Can be rewritten: $y = \vec{x} \cdot \vec{w}$

How do we find optimal parameter values?



With 1 input feature, 2 *parameters*

m (slope) -

 x_1

90

80

62

- b(bias) Input F	<u>eatures</u>		<u>Output Target</u>
<i>x</i> ₂	<i>x</i> ₃	x_4	y y
Sunny?	Day of Week	Constant	Profit
Yes	Sat	1	\$200
No	Mon	1	\$91
No	Wed	1	\$54

With multiple input features:

- Need a weight parameter w_i for each feature x_i -
- $y = x_1^{(i)} \cdot w_1 + x_2^{(i)} \cdot w_2^{(i)} + \dots + x_d^{(i)} \cdot w_d$
- Can be rewritten: $y = \vec{x} \cdot \vec{w}$

Goal: Minimize Loss function

Process:

- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Goal: Minimize *Loss* function *Process:*

MSE (Mean Squared Error)

- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Goal: Minimize *Loss* function *Process:*

- Find derivative (or gradient) of loss function

- Set derivative to 0

Generalization of derivatives to functions with multiple inputs

MSE (Mean Squared Error)

- Solve for parameters

Goal: Minimize *Loss* function *Process:*

- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Generalization of derivatives to functions with multiple inputs

Is this guaranteed to find the global best parameter settings?

MSE (Mean Squared Error)

Goal: Minimize *Loss* function *Process:*

- Find derivative (or gradient) of loss function

- Set derivative to 0
- Solve for parameters

weight vector $w \in \mathbb{R}^d$

Generalization of derivatives to functions with multiple inputs

MSE (Mean Squared Error)

Is this guaranteed to find the global best parameter settings?

Gradients

The gradient of a function *f* is a vector of partial derivatives:

$$\nabla f_{\theta} = \left[\frac{\partial f}{\theta_1}, \frac{\partial f}{\theta_2}, \frac{\partial f}{\theta_3}, \dots, \frac{\partial f}{\theta_d}\right]$$

Gradients

The gradient of a function *f* is a vector of partial derivatives:

$$\nabla f_{\theta} = \begin{bmatrix} \frac{\partial f}{\theta_1}, \frac{\partial f}{\theta_2}, \frac{\partial f}{\theta_3}, \dots, \frac{\partial f}{\theta_d} \end{bmatrix}$$

For a linear regression model with one input variable what dimension is ∇f_{θ} in?

 $\nabla f_{\theta} \in \mathbb{R}^{?}$

Gradients

The gradient of a function *f* is a vector of partial derivatives:

$$\nabla f_{\theta} = \begin{bmatrix} \frac{\partial f}{\theta_1}, \frac{\partial f}{\theta_2}, \frac{\partial f}{\theta_3}, \dots, \frac{\partial f}{\theta_d} \end{bmatrix}$$

For a linear regression model with one input variable what dimension is ∇f_{θ} in?

 $\nabla f_{\theta} \in \mathbb{R}^{?}$

 $abla f_w$ tells us what happens to f with small adjustments to each parameter w

$$\mathcal{L} = MSE = \frac{\sum_{i=1}^{n} (y_i - \vec{w}^T \ \vec{x})^2}{n}$$

Matrix notation will make our lives easy! $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^n, \vec{w} \in \mathbb{R}^d$ Vectors are assumed to be column vectors, i.e., $y \in \mathbb{R}^{n \times 1}$

$$\mathcal{L} = MSE = \frac{\sum_{i=1}^{n} (y_i - \vec{w}^T \ \vec{x})^2}{n}$$

Matrix notation will make our lives easy! $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}, \vec{w} \in \mathbb{R}^{d}$

Vectors are assumed to be column vectors, i.e., $\mathbf{y} \in \mathbb{R}^{n \times 1}$

Is this a legal operation: $y - \vec{w}X$?

$$\mathcal{L} = MSE = \frac{\sum_{i=1}^{n} (y_i - \vec{w}^T \vec{x})^2}{n}$$

Matrix notation will make our lives easy! $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}, \vec{w} \in \mathbb{R}^{d}$

Vectors are assumed to be column vectors, i.e., $\mathbf{y} \in \mathbb{R}^{n \times 1}$

Is this a legal operation: $y - \vec{w}X$?

Is this a legal operation: $(y - X \vec{w})(y - X \vec{w})$?

$$\mathcal{L} = MSE = \frac{\sum_{i=1}^{n} (y_i - \vec{w}^T \vec{x})^2}{n}$$

Matrix notation will make our lives easy! $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^{n}$, $\vec{w} \in \mathbb{R}^{d}$

Vectors are assumed to be column vectors, i.e., $\mathbf{y} \in \mathbb{R}^{n \times 1}$

Is this a legal operation: $y - \vec{w}X$?

Is this a legal operation: $(y - X \vec{w})(y - X \vec{w})$?

Shape errors are the most common errors you will face when starting deep learning

$$\mathcal{L} = MSE = \frac{\sum_{i=1}^{n} (y_i - \vec{w}^T \ \vec{x})^2}{n}$$

Matrix notation will make our lives easy! $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}, \overline{w} \in \mathbb{R}^{d}$ Vectors are assumed to be column vectors, i.e., $y \in \mathbb{R}^{n \times 1}$

Is this a legal operation: $y - \vec{w}X$?

Is this a legal operation: $(y - X \vec{w})(y - X \vec{w})$?

Shape errors are the most common errors you will face when starting deep learning

$$\mathcal{L} = MSE = \frac{\sum_{i}^{n} (y_{i} - \vec{w}^{T} \vec{x})^{2}}{n}$$
$$(\mathbf{y} - \mathbf{X}\vec{w})^{T} (\mathbf{y} - \mathbf{X}\vec{w})$$

Matrix notation will make our lives easy! $X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}, \vec{w} \in \mathbb{R}^{d}$ Vectors are assumed to be column vectors, i.e., $y \in \mathbb{R}^{n \times 1}$ Is this a legal operation: $y - \vec{w}X$? $\mathcal{L} = MSE = \frac{\sum_{i}^{n} (y_{i} - \vec{w}^{T} \vec{x})^{2}}{n}$ $\mathcal{L} = \frac{(y - X\vec{w})^{T}(y - X\vec{w})}{n}$ Is this a legal operation: $(y - X\vec{w})(y - X\vec{w})$? $\mathcal{L} = \frac{y^{T}y - y^{T}X\vec{w} - \vec{w}^{T}X^{T}y + \vec{w}^{T}X^{T}X\vec{w}}{n}$

> Shape errors are the most common errors you will face when starting deep learning

 $\mathcal{L} = MSE = \frac{\sum_{i=1}^{n} (y_i - \vec{w}^T \vec{x})^2}{2}$ Matrix notation will make our lives easy! $\mathbb{X} \in \mathbb{R}^{n \times d}, \mathbb{Y} \in \mathbb{R}^{n}, \vec{W} \in \mathbb{R}^{d}$ Vectors are assumed to be column vectors, i.e., $y \in \mathbb{R}^{n \times 1}$ $\mathcal{L} = \frac{(\mathbf{y} - \mathbf{X}\vec{w})^T(\mathbf{y} - \mathbf{X}\vec{w})}{\mathbf{w}}$ Is this a legal operation: $y - \vec{w}X$? Is this a legal operation: $(y - X \vec{w})(y - X \vec{w})$? $\mathcal{L} = \frac{\mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \vec{w} - \vec{w}^T \mathbf{X}^T \mathbf{y} + \vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}}{\mathbf{x}^T \mathbf{x} \mathbf{y} + \vec{w}^T \mathbf{x}^T \mathbf{x} \mathbf{y} + \vec{w}^T \mathbf{x} \mathbf{y} + \vec{w}$ Shape errors are the most $\nabla \mathcal{L}_{w} = \frac{-2\mathbb{X}^{T}\mathbb{y} + 2\mathbb{X}^{T}\mathbb{X}\vec{w}}{}$ common errors you will face when starting deep learning

 $\mathcal{L} = MSE = \frac{\sum_{i=1}^{n} (y_i - \vec{w}^T \vec{x})^2}{2}$ Matrix notation will make our lives easy! $\mathbb{X} \in \mathbb{R}^{n \times d}, \mathbb{Y} \in \mathbb{R}^{n}, \vec{W} \in \mathbb{R}^{d}$ Vectors are assumed to be column vectors, i.e., $y \in \mathbb{R}^{n \times 1}$ $\mathcal{L} = \frac{(\mathbf{y} - \mathbf{X}\vec{w})^T(\mathbf{y} - \mathbf{X}\vec{w})}{\mathbf{w}}$ Is this a legal operation: $\mathbf{y} - \vec{w} \mathbf{X}$? Is this a legal operation: $(y - X \vec{w})(y - X \vec{w})$? $\mathcal{L} = \frac{\mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \vec{w} - \vec{w}^T \mathbf{X}^T \mathbf{y} + \vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}}{\mathbf{x}^T \mathbf{x} \mathbf{y} + \vec{w}^T \mathbf{x}^T \mathbf{x} \mathbf{x} \mathbf{y}}$ Shape errors are the most $\nabla \mathcal{L}_{w} = \frac{-2\mathbb{X}^{T}\mathbb{y} + 2\mathbb{X}^{T}\mathbb{X}\vec{w}}{}$ common errors you will face when starting deep learning $0 = -\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \vec{w}$

 $\mathcal{L} = MSE = \frac{\sum_{i=1}^{n} (y_i - \vec{w}^T \vec{x})^2}{2}$ Matrix notation will make our lives easy! $\mathbb{X} \in \mathbb{R}^{n \times d}, \mathbb{Y} \in \mathbb{R}^{n}, \vec{W} \in \mathbb{R}^{d}$ Vectors are assumed to be column vectors, i.e., $y \in \mathbb{R}^{n \times 1}$ $\mathcal{L} = \frac{(\mathbf{y} - \mathbf{X}\vec{w})^T(\mathbf{y} - \mathbf{X}\vec{w})}{T(\mathbf{y} - \mathbf{X}\vec{w})}$ Is this a legal operation: $y - \vec{w}X$? Is this a legal operation: $(y - X \vec{w})(y - X \vec{w})$? $\mathcal{L} = \frac{\mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \vec{w} - \vec{w}^T \mathbf{X}^T \mathbf{y} + \vec{w}^T \mathbf{X}^T \mathbf{X} \vec{w}}{\mathbf{x}^T \mathbf{x} \mathbf{y} + \vec{w}^T \mathbf{x}^T \mathbf{x} \mathbf{x} \mathbf{y}}$ Shape errors are the most $\nabla \mathcal{L}_{w} = \frac{-2\mathbb{X}^{T}\mathbb{y} + 2\mathbb{X}^{T}\mathbb{X}\overrightarrow{w}}{}$ common errors you will face when starting deep learning $0 = -\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \vec{w}$ $(\mathbb{X}^T\mathbb{X})^{-1}(\mathbb{X}^T\mathbb{y}) = \vec{w}$

Closed Form Solution

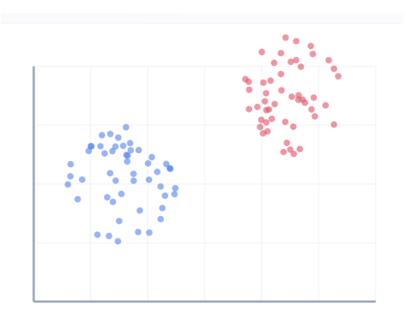
Advantages:

- Simple/fast to implement

Disadvantages:

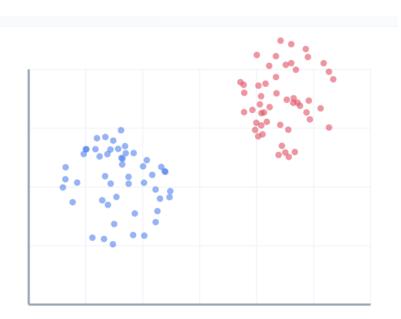
- Need to invert: $(XX^T)^{-1}$
- Matrix inversion is $O(n^3)$
- (XX^T) May not be invertible
- Doesn't necessarily exist for other models

A Linear Classification Model

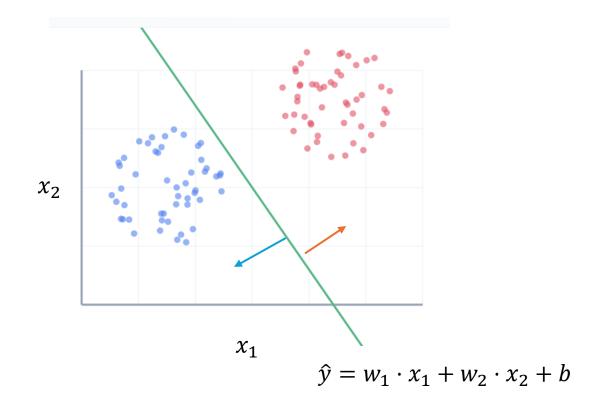


A Linear Classification Model

Linear Regression is a linear model for *regression*. What's a natural way to make a linear *classifier*?

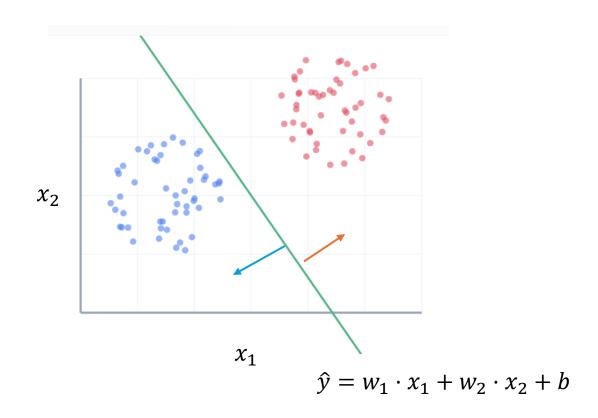


Everything above the line (or hyperplane in >2D) is classified as 1, everything below the line as 0



Everything above the line (or hyperplane in >2D) is classified as 1, everything below the line as 0

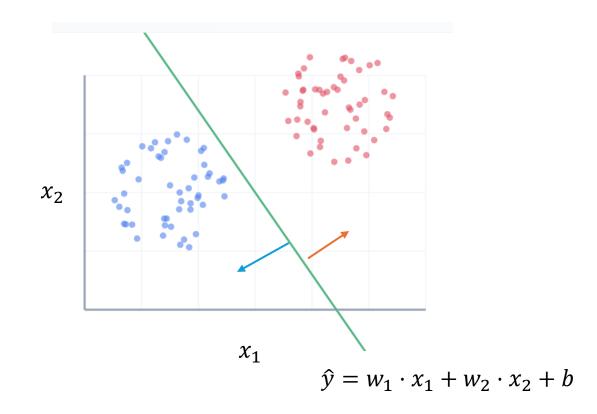
How can you tell if a point is above or below the line?



Everything above the line (or hyperplane in >2D) is classified as 1, everything below the line as 0

How can you tell if a point is above or below the line?

If $\hat{y} = 0$, the point is **on** the line, If $\hat{y} > 0$, the point is "**above**" the line, If $\hat{y} < 0$, the point is "**below**" the line

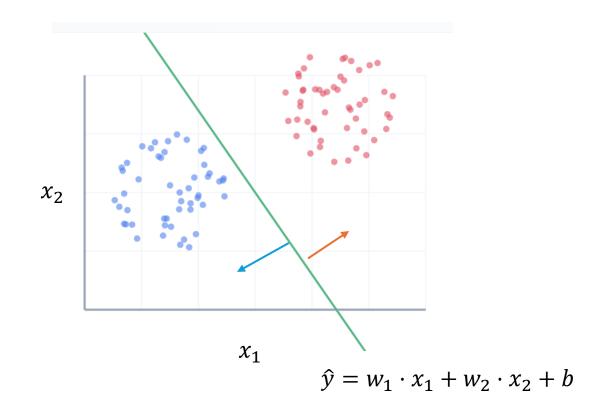


Everything above the line (or hyperplane in >2D) is classified as 1, everything below the line as 0

How can you tell if a point is above or below the line?

If $\hat{y} = 0$, the point is **on** the line, If $\hat{y} > 0$, the point is "**above**" the line, If $\hat{y} < 0$, the point is "**below**" the line

> If $\hat{y} > 0$, predict 1. If $\hat{y} \le 0$, predict 0.

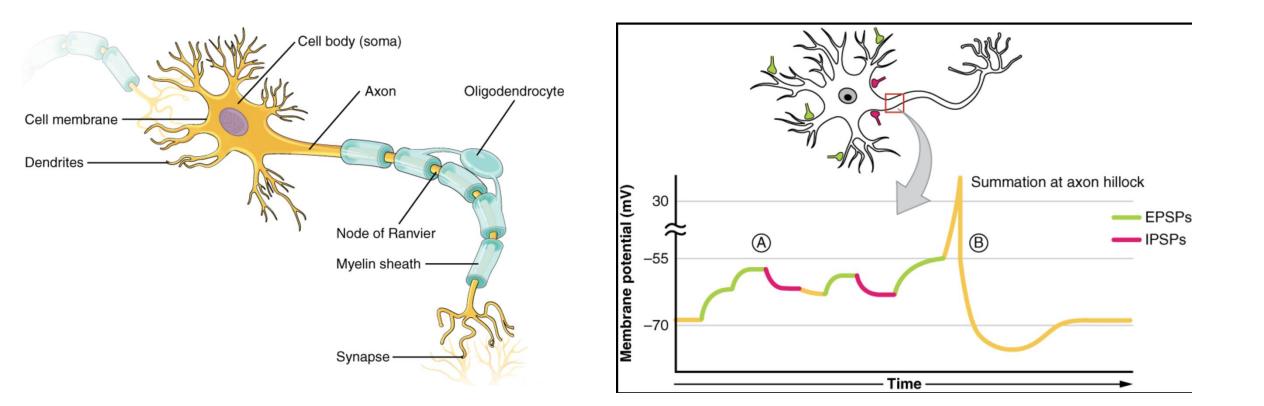


Perceptrons: A Linear Classifier

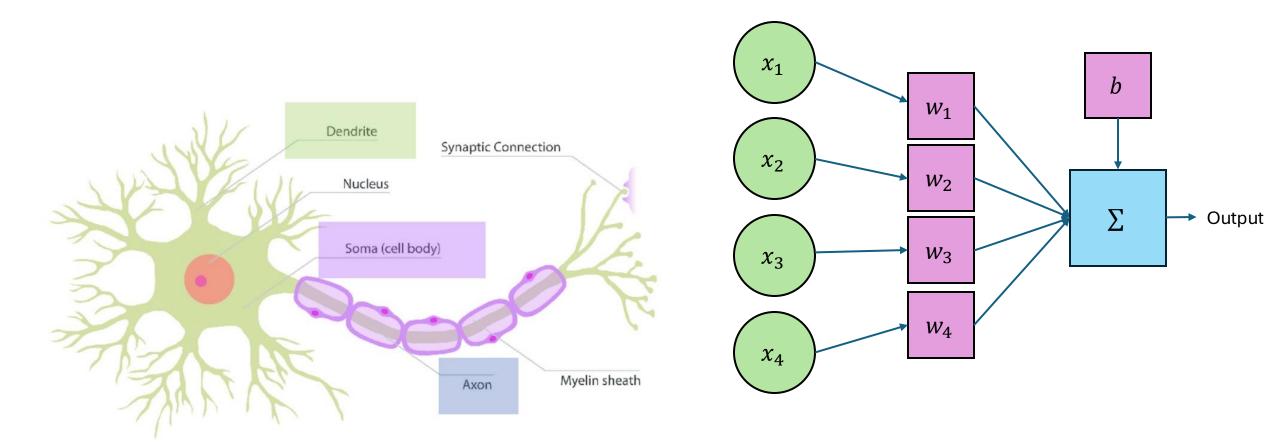
(Our first building block of Deep Learning)

Biological Motivation

- Loosely inspired by neurons, basic working unit of the brain
- Serve to transmit information between cells



The Perceptron



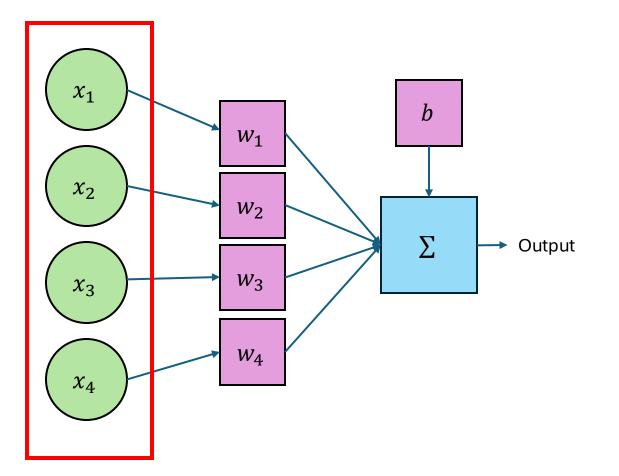
Biological Neuron

Artificial Neuron (Perceptron)

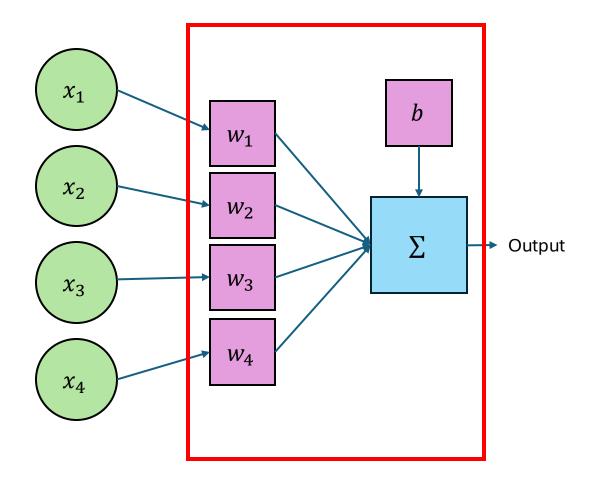
Inputs

Inputs are $\vec{x} = [x_1, x_2, \dots, x_d]$

Features of the data

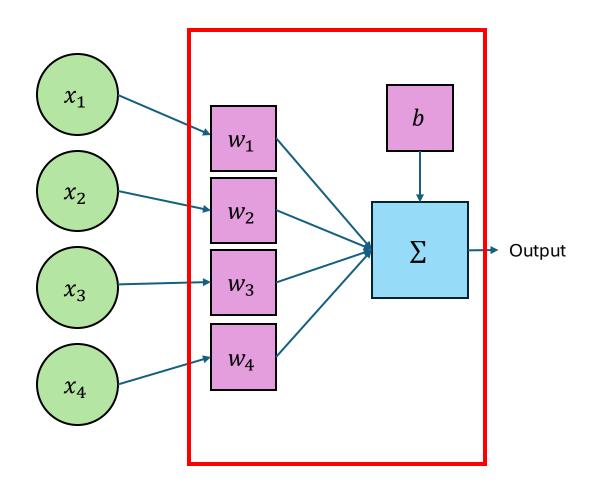


- Take each of the inputs and multiply by corresponding weight
- 2. Sum the results, add bias term

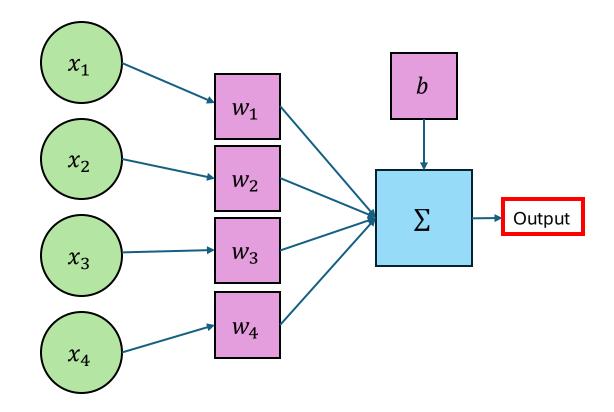


- Take each of the inputs and multiply by corresponding weight
- 2. Sum the results, add bias term

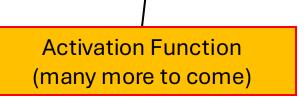
Until here, a Perceptron and Linear Regression are equivalent

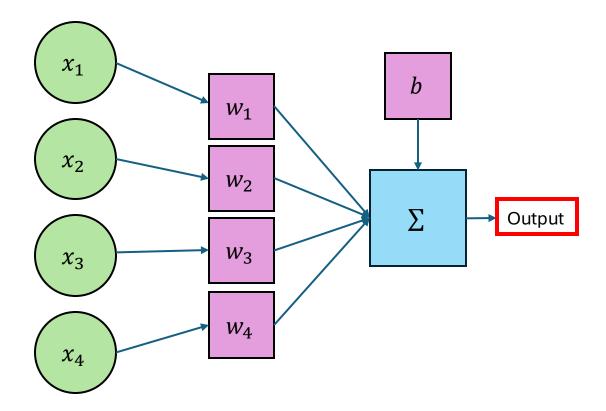


- Take each of the inputs and multiply by corresponding weight
- 2. Sum the results, add bias term
- 3. If output is above 0, return 1, otherwise return 0

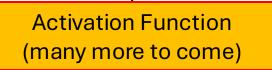


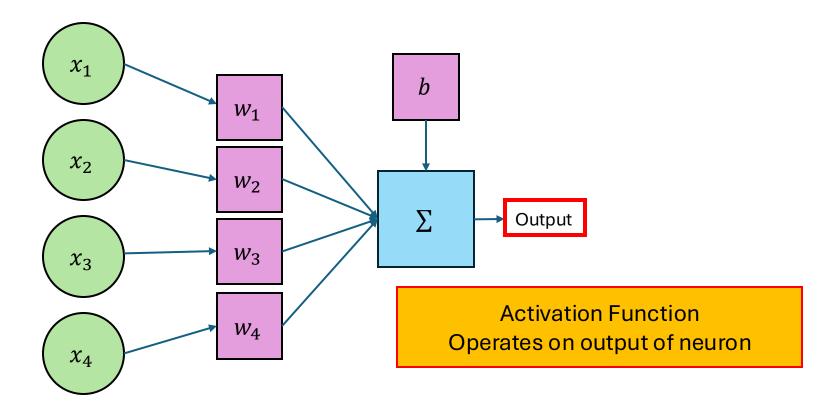
- Take each of the inputs and multiply by corresponding weight
- 2. Sum the results, add bias term
- 3. If output is above 0, return 1, otherwise return 0

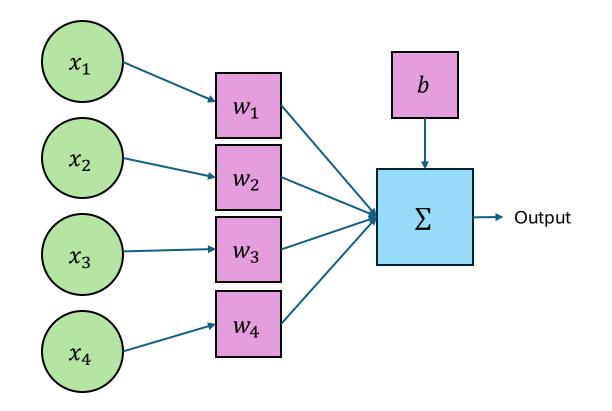


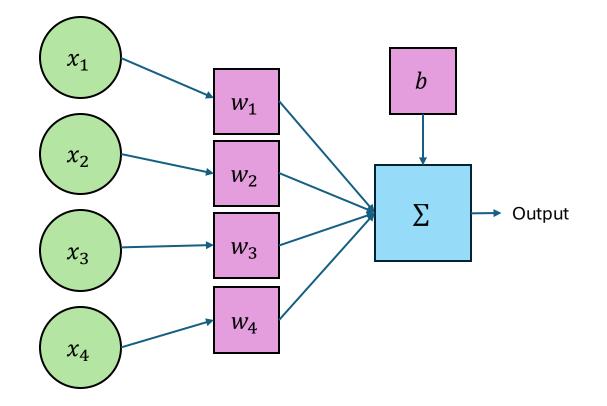


- Take each of the inputs and multiply by corresponding weight
- 2. Sum the results, add bias term
- 3. If output is above 0, return 1, otherwise return 0





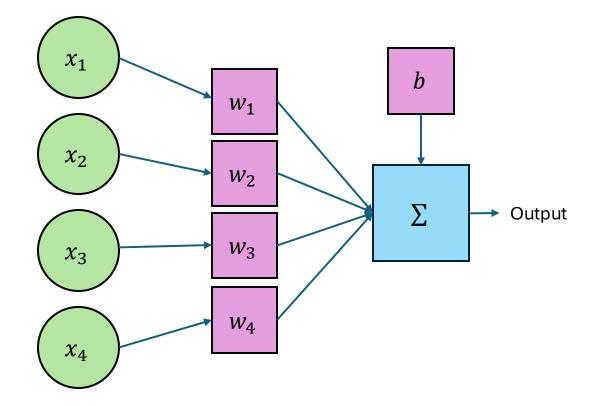




What would it mean for a weight to be 0?

What would it mean for a weight to be 0?

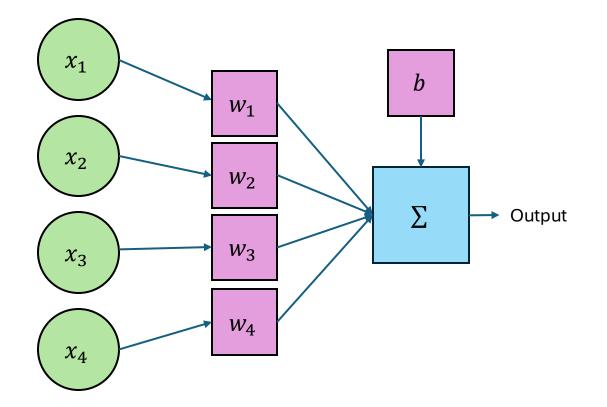
What would it mean for a weight to be very positive?



What would it mean for a weight to be 0?

What would it mean for a weight to be very positive?

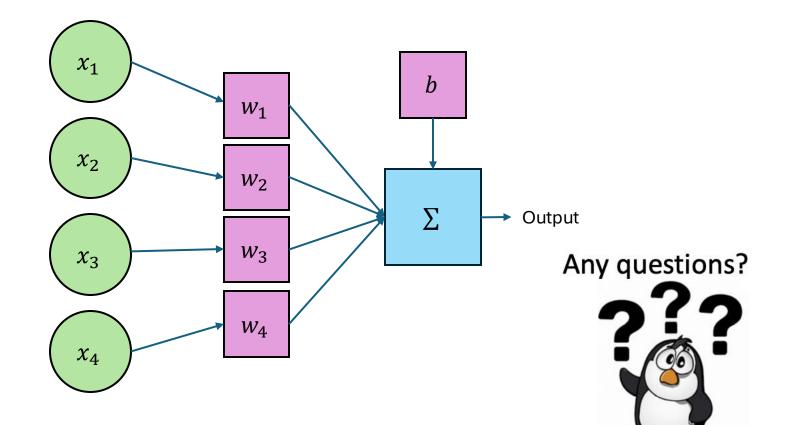
What would it mean for a weight to be very negative?



What would it mean for a weight to be 0?

What would it mean for a weight to be very positive?

What would it mean for a weight to be very negative?



How Strong are Linear Separators?

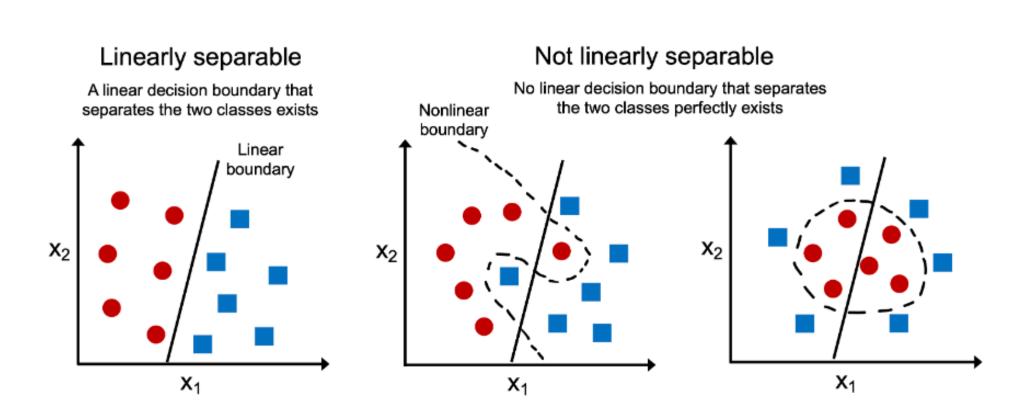


Image courtesy of: https://vitalflux.com/how-know-data-linear-non-linear/

MNIST

The most famous dataset in Deep Learning

Modified National Institute of Standards and Technology database

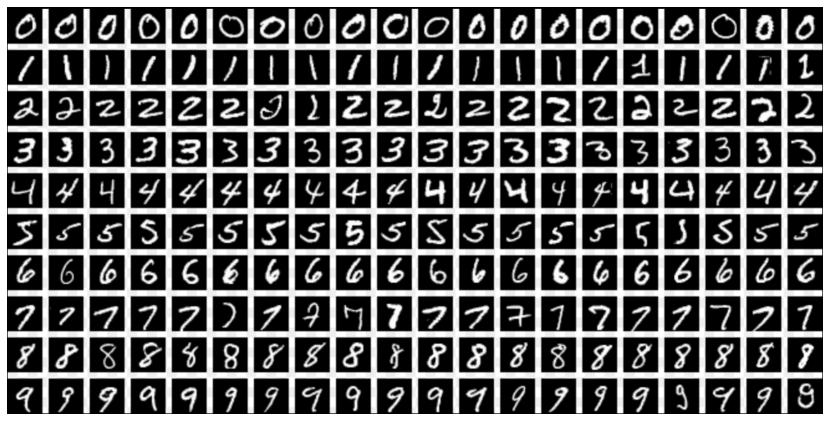


Image courtesy of Wikipedia

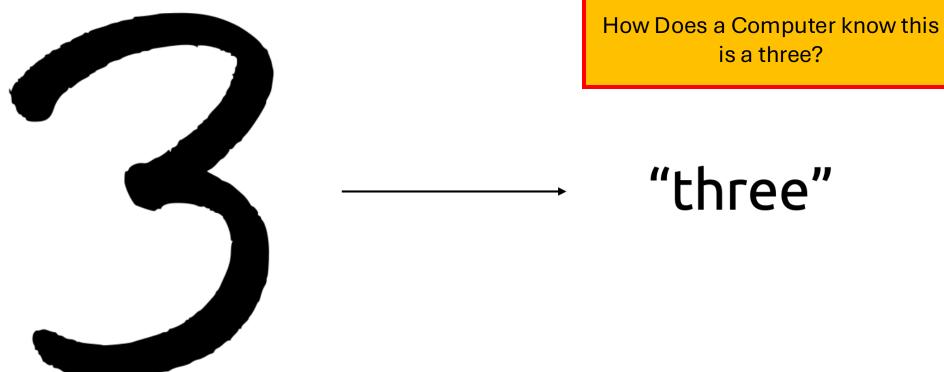
Motivation: Zip Code Recognition

- In 1990s, great increase in documents on paper (mail, checks, books, etc.)
- Motivation for a ZIP code recognizer on real U.S. mail for the postal service!

80322-4129 80206 40004 (4310 27878 05753 .55502 75576 35460: A4209

Our Problem:

Input: X Target: Y 3^{*} $f(X) \rightarrow Y$ Target: Y Which digit is it? 3^{*}

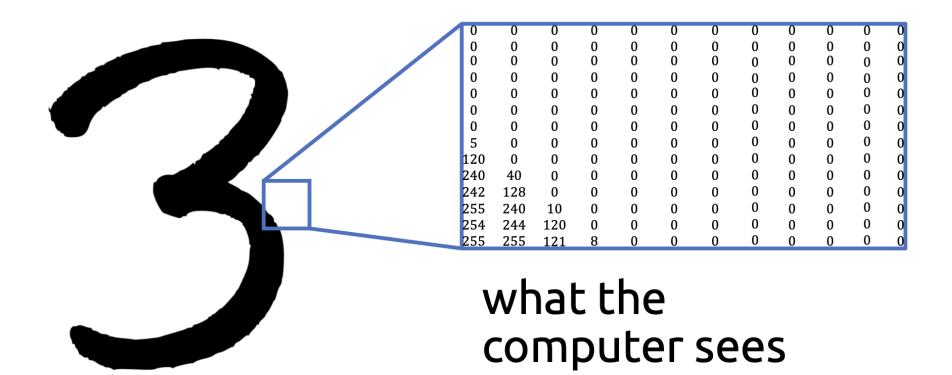


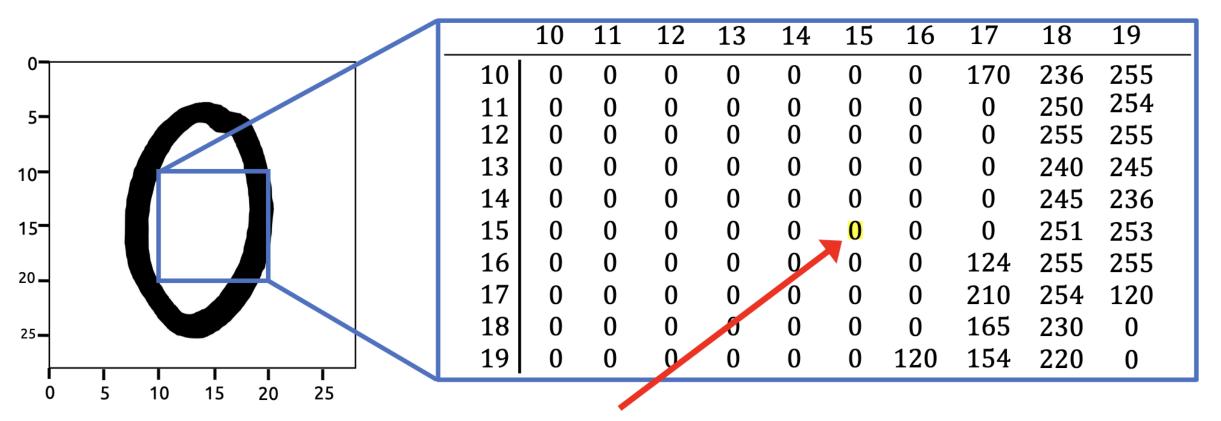
Representing digits in the computer

 Numbers known as *pixel values* (a grid of discrete values that make up an image)

0 is white, 255 is black, and numbers in between are shades of gray

		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
11	57 1	53 1	74	168	150	152	129	151	172	161	155	156	157	153	174	168	150	152	129	151	172	161	155	156
14	55 1	82 1	163	74	75	62	33	17	110	210	180	154	155	182	163	74	75	62	33	17	110	210	180	154
14	80 1	80	50	14	34	6	10	33	48	105	159	181	180	180	50	14	34	6	10	33	48	106	159	181
20	06 1	99	5	124	131	111	120	204	166	15	56	180	206	109	5	124	131	111	120	204	166	15	56	180
19	94	68	37	251	237	239	239	228	227	87		201	194	68	137	251	237	239	239	228	227	87	n	201
31	72 1	06 S	207	233	233	214	220	239	228	98	74	206	172	106	207	233	233	214	220	239	228	98	74	206
14	88	88	79	209	185	215	211	158	139	75	20	169	188	88	179	209	185	215	211	158	139	75	20	169
14	89	97 1	65	84	10	168	134	11	31	62	22	148	189	97	165	84	10	168	134	11	31	62	22	148
11	99 1	68 1	191	193	158	227	178	143	182	105	36	190	199	168	191	193	158	227	178	143	182	106	36	190
2	05 1	74 1	55	252	236	231	149	178	228	43	95	234	206	174	155	252	236	231	149	178	228	43	95	234
1	90 2	16 1	116	149	236	187	85	150	79	38	218	241	190	216	116	149	236	187	86	150	79	38	218	241
19	90 2	24 1	47	108	227	210	127	102	36	101	255	224	190	224	147	108	227	210	127	102	36	101	255	224
19	90 2	14 1	73	66	103	143	95	50	2	109	249	215	190	214	173	66	103	143	96	50	2	109	249	215
1	87 1	96 2	235	75	1	81	47	٥	6	217	255	211	187	196	235	75	1	81	47	0	6	217	255	211
1	83 2	02 2	237	145	0	0	12	108	200	138	243	236	183	202	237	145	0	0	12	108	200	138	243	236
39	95 2	06 1	23	207	177	121	123	200	175	13	96	218	195	206	123	207	177	121	123	200	175	13	96	218





• Pixel in position [15, 15] is light.

what the computer sees

Center is typically empty for 0's. How does this compare with 3's?

255	255	255	255	255	253	254	245	255
255	255	251	255	255	255	254	235	252
255	252	255	250	255	245	255	253	234
253	255	255	255	251	254	255	255	235
255	255	252	255	249	255	239	243	255
255	250	255	245	255	255	254	244	254
255	255	255	255	249	255	255	255	244
249	255	253	255	233	255	249	245	239
255	255	255	250	255	254	251	243	251
245	240	244	240	239	244	255	244	248
242	128	140	150	130	128	110	245	246
240	240	4	5	4	3	2	118	120
240	5	4	2	0	0	0	4	2
0	0	0	0	0	0	0	0	0

Darker pixels in the middle

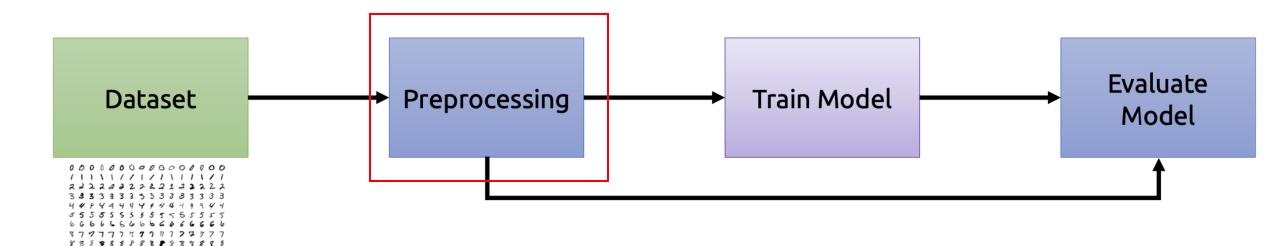
255	255	255	255	255	253	254	245	255
255	255	251	255	255	255	254	235	252
255	252	255	250	255	245	255	253	234
253	255	255	255	251	254	255	255	235
255	255	252	255	249	255	239	243	255
255	250	255	245	255	255	254	244	254
255	255	255	255	249	255	255	255	244
249	255	253	255	233	255	249	245	239
255	255	255	250	255	254	251	243	251
245	240	244	240	239	244	255	244	248
242	128	140	150	130	128	110	245	246
240	240	4	5	4	3	2	118	120
240	5	4	2	0	0	0	4	2
0	0	0	0	0	0	0	0	0

Darker pixels in the middle

255	255							
	255	255	255	255	253	254	245	255
255	255	251	255	255	255	254	235	252
255	252	255	250	255	245	255	253	234
253	255	255	255	251	254	255	255	235
255	255	252	255	249	255	239	243	255
255	250	255	245	255	255	254	244	254
255	255	255	255	249	255	255	255	244
249	255	253	255	233	255	249	245	239
255	255	255	250	255	254	251	243	251
245	240	244	240	239	244	255	244	248
242	128	140	150	130	128	110	245	246
240	240	4	5	4	3	2	118	120
240	5	4	2	0	0	0	4	2
240	5	4	2	0	0	0	0	0
0	U	0	U	0	0	0	0	0

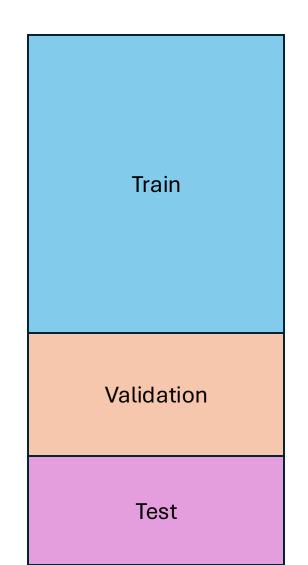
intuition), to classify digits?

Machine Learning Pipeline for Digit Recognition



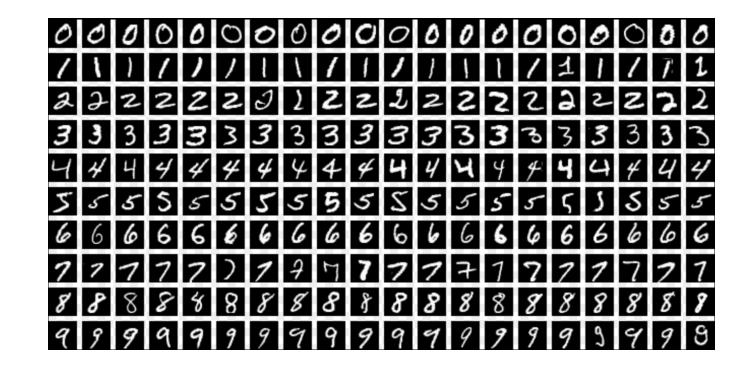
Train, validation, and test sets

- Training Set: Used to adjust parameters of model
- Validation set used to test how well we're doing as we develop
 - Prevents *overfitting*
- Test Set used to evaluate the model once the model is done



MNIST

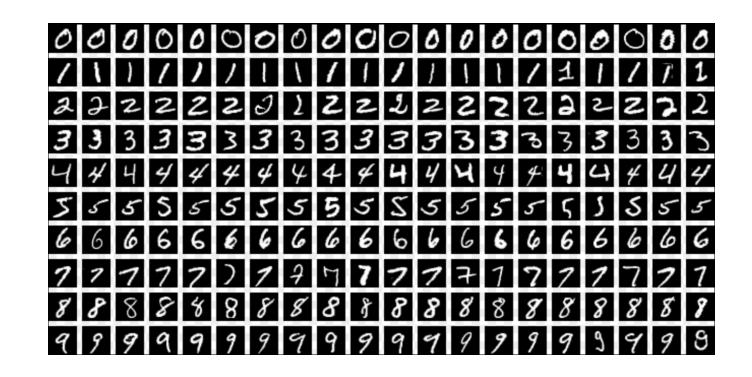
- 60,000 Images in training set
- 10,000 Images in test set
- No explicit validation set



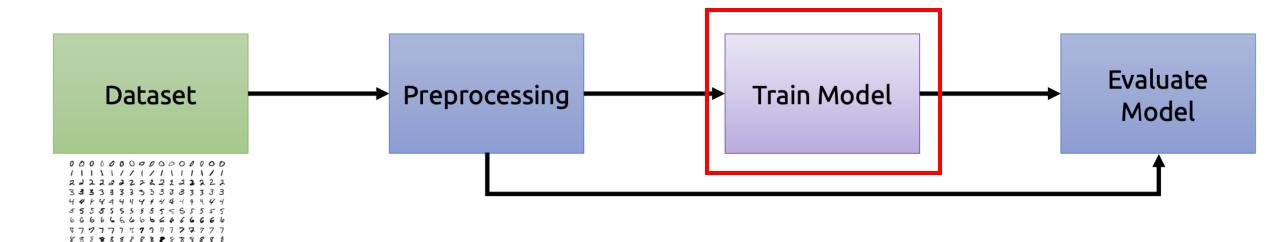
MNIST

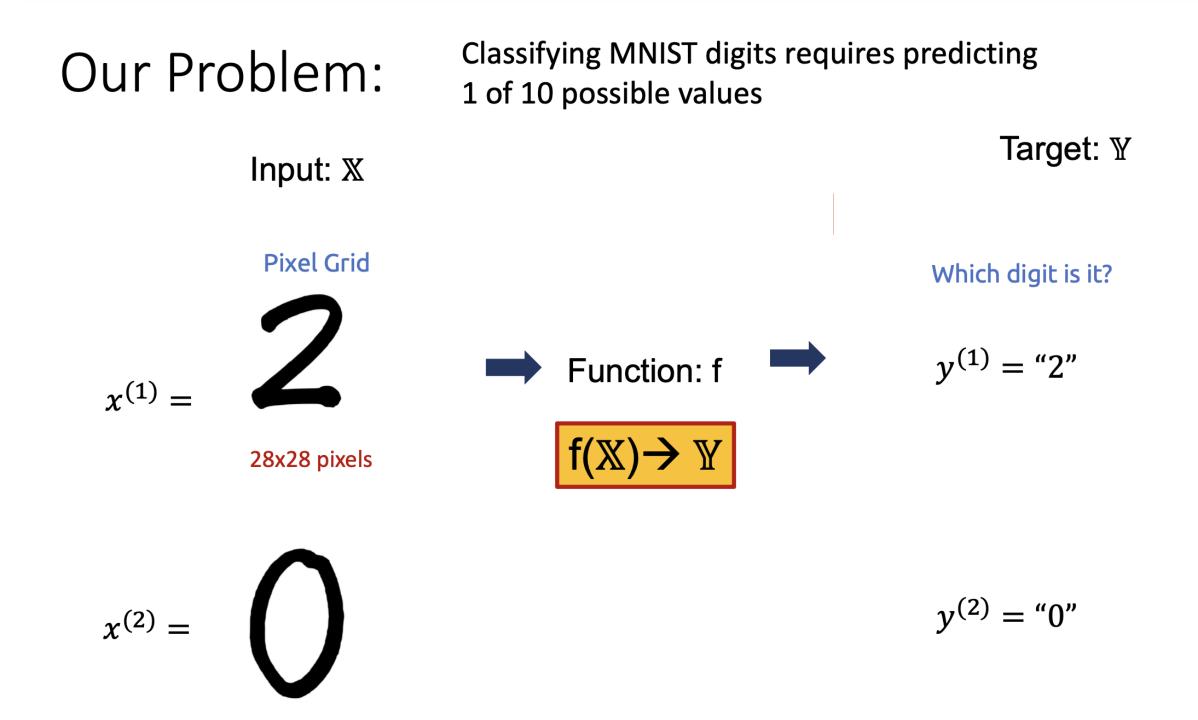
- 60,000 Images in training set
- 10,000 Images in test set
- No explicit validation set

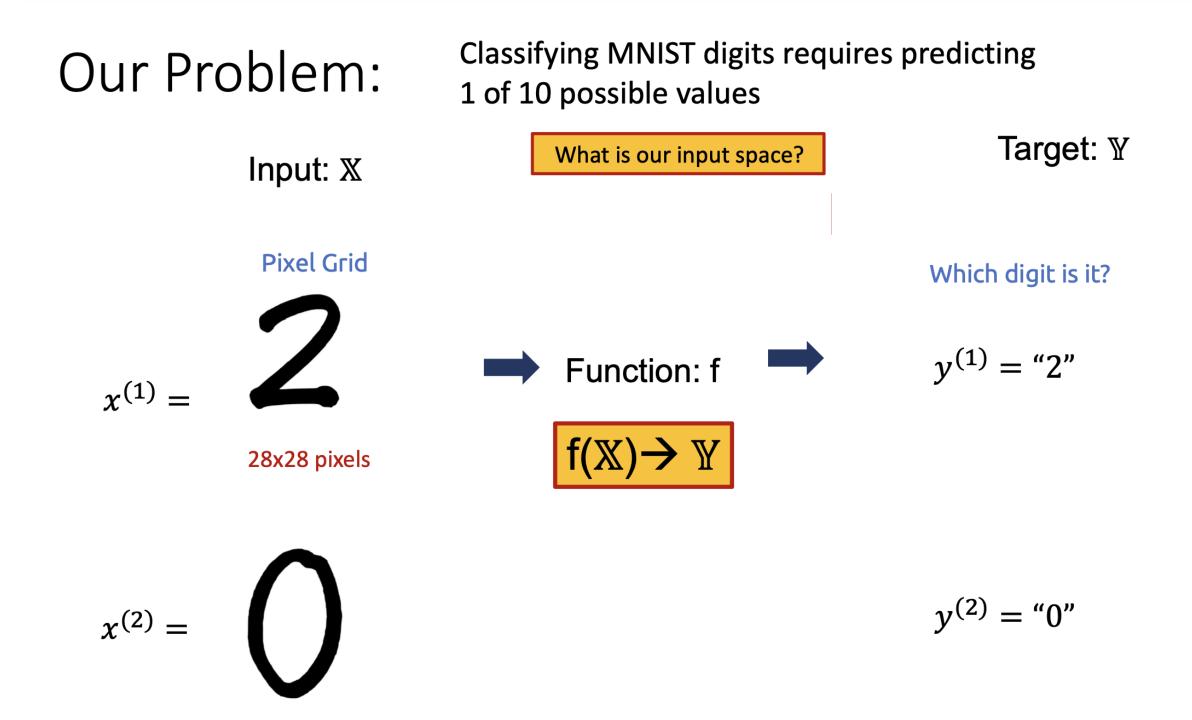
What do you suggest we do?

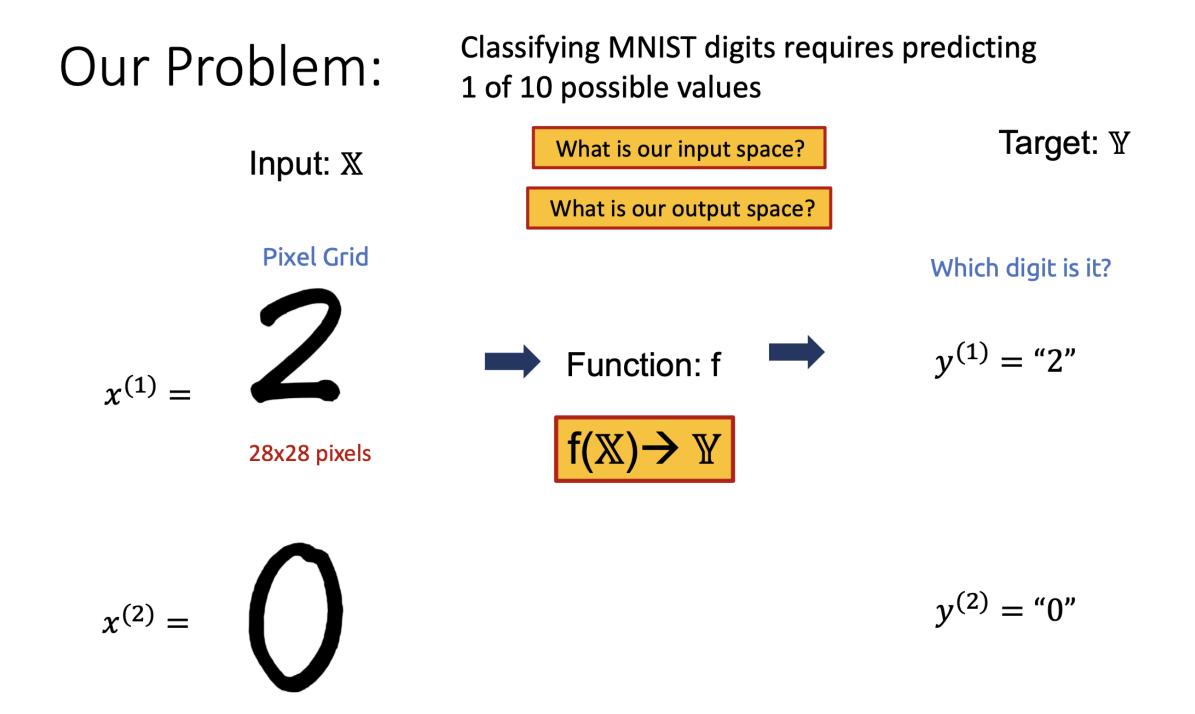


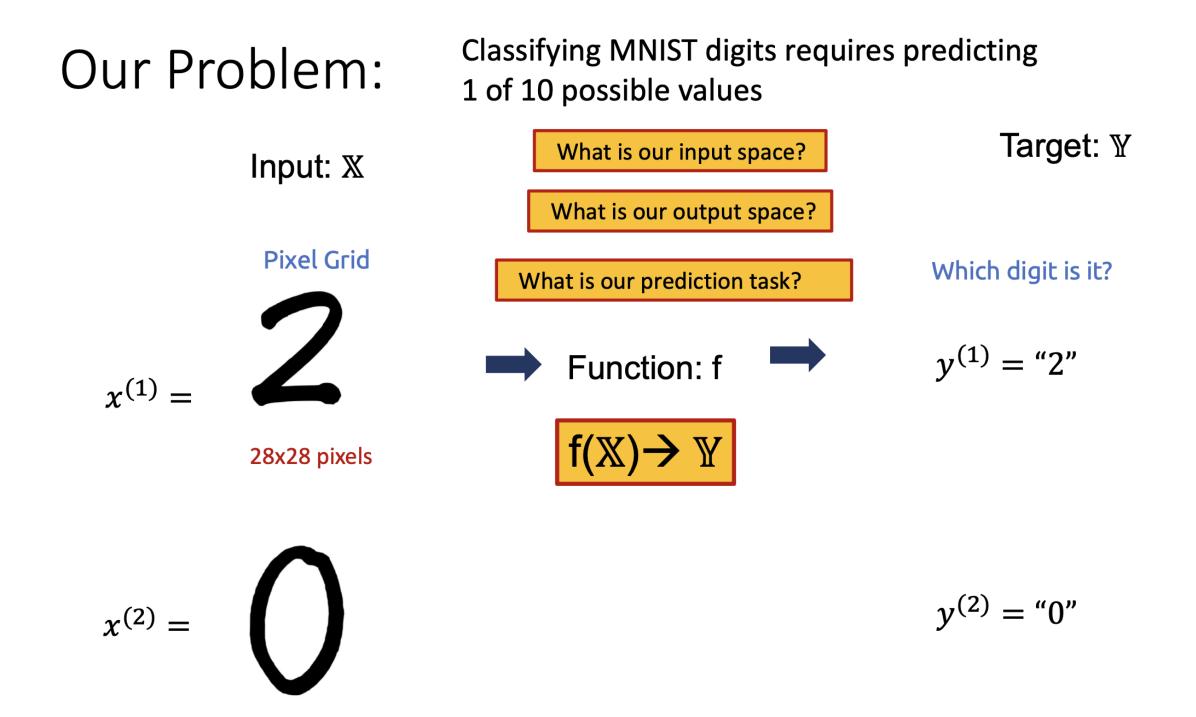
Machine Learning Pipeline for Digit Recognition



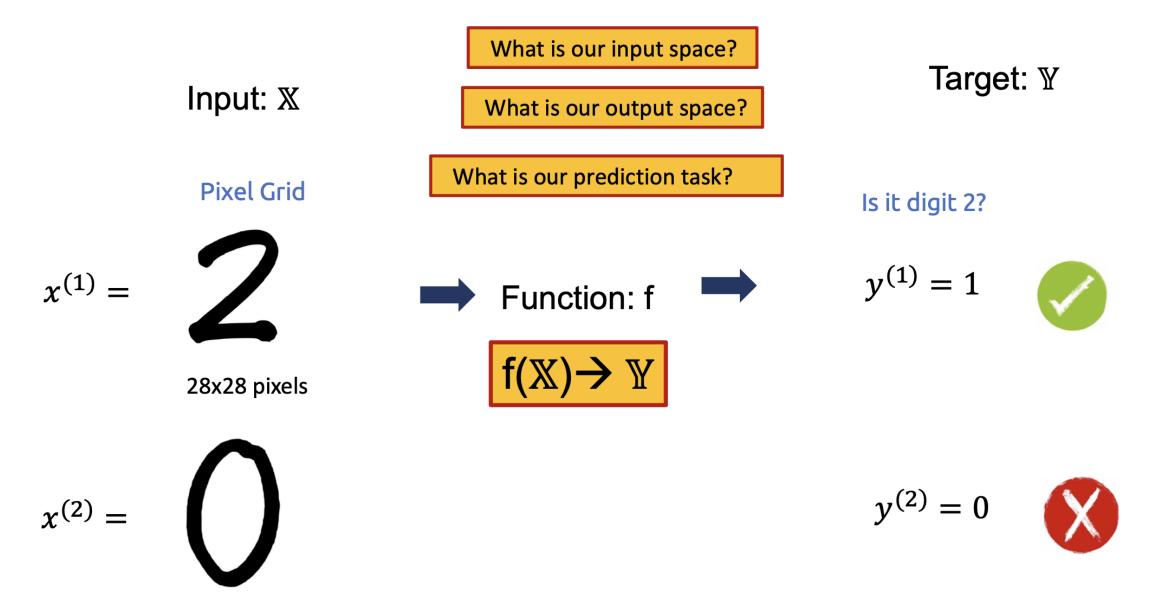








Our simplified problem:



A bit of a cliffhanger...

- How well do you think a perceptron will do on this task?
- Perceptrons are linear classifiers... what does it mean for images to be linearly separable?
- Perceptrons have a discontinuous activation function, which is not differentiable. How are we going to find good parameters without a nice closed-form solution?

