
Deep Learning

Eric Ewing

CSCI 1470

Monday,
1/27/25

Day 3: Linear Regression, Perceptrons,
 and MNIST

- Much less Supervised Fine Tuning (SFT) than previous models (e.g., GPT4)
- Uses Reinforcement Learning heavily (final part of this course)

Key Ideas Review

Train on Training
set

Evaluate on
validation Set

But what we
really care about
is performance

on test set

Goal of supervised learning: Find good
approximation of data

Supervised
Learning

How to represent
Input/Output

Input/Output need to be numbers

Classification: Predicting categorical
outputs (y is discrete)

Regression: Predicting numerical
outputs (y is continuous)

Today’s Goal: Learn about Perceptrons, the
first building block of Neural Networks
• Optimization
• Perceptrons
• Introduction to MNIST

Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters
- m (slope)
- b (bias)

Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters
- m (slope)
- b (bias)

Input Features Output Target

Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters
- m (slope)
- b (bias)

Input Features Output Target

Constant

1
1
1

𝑥4

Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters
- m (slope)
- b (bias)

With multiple input features:
- Need a weight parameter 𝑤𝑖 for each feature xi

- 𝑦 = 𝑥1
𝑖

⋅ 𝑤1 + 𝑥2
𝑖

⋅ 𝑤2
𝑖

+ ⋯ + 𝑥𝑑
𝑖

⋅ 𝑤𝑑

- Can be rewritten: 𝑦 = Ԧ𝑥 ⋅ 𝑤

Input Features Output Target

Constant

1
1
1

𝑥4

Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters
- m (slope)
- b (bias)

With multiple input features:
- Need a weight parameter 𝑤𝑖 for each feature xi

- 𝑦 = 𝑥1
𝑖

⋅ 𝑤1 + 𝑥2
𝑖

⋅ 𝑤2
𝑖

+ ⋯ + 𝑥𝑑
𝑖

⋅ 𝑤𝑑

- Can be rewritten: 𝑦 = Ԧ𝑥 ⋅ 𝑤

Input Features Output Target

How do we find optimal
parameter values?

Constant

1
1
1

𝑥4

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

MSE (Mean Squared Error)

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

MSE (Mean Squared Error)

Generalization of derivatives to
functions with multiple inputs

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

MSE (Mean Squared Error)

Generalization of derivatives to
functions with multiple inputs

Is this guaranteed to find the
global best parameter settings?

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

MSE (Mean Squared Error)

Generalization of derivatives to
functions with multiple inputs

Is this guaranteed to find the
global best parameter settings?

weight vector w ∈ ℝ𝑑

Gradients

The gradient of a function f is a vector of partial derivatives:

∇𝑓𝜃 = [
𝜕𝑓

𝜃1
,
𝜕𝑓

𝜃2
,
𝜕𝑓

𝜃3
, … ,

𝜕𝑓

𝜃𝑑
]

Gradients

The gradient of a function f is a vector of partial derivatives:

∇𝑓𝜃 = [
𝜕𝑓

𝜃1
,
𝜕𝑓

𝜃2
,
𝜕𝑓

𝜃3
, … ,

𝜕𝑓

𝜃𝑑
]

For a linear regression model with one
input variable what dimension is ∇𝑓𝜃 in?

∇𝑓𝜃 ∈ ℝ?

Gradients

The gradient of a function f is a vector of partial derivatives:

∇𝑓𝜃 = [
𝜕𝑓

𝜃1
,
𝜕𝑓

𝜃2
,
𝜕𝑓

𝜃3
, … ,

𝜕𝑓

𝜃𝑑
]

∇𝑓𝑤 tells us what happens
to f with small adjustments

to each parameter w
For a linear regression model with one

input variable what dimension is ∇𝑓𝜃 in?

∇𝑓𝜃 ∈ ℝ?

Option 1: Closed Form Solution

Option 1: Closed Form Solution

ℒ = 𝑀𝑆𝐸 =
σ𝑖

𝑛(𝑦𝑖−𝑤𝑇 Ԧ𝑥)^2

𝑛

Option 1: Closed Form Solution

ℒ = 𝑀𝑆𝐸 =
σ𝑖

𝑛(𝑦𝑖−𝑤𝑇 Ԧ𝑥)^2

𝑛

Matrix notation will make our lives easy!
𝕏 ∈ ℝ𝑛×𝑑, 𝕪 ∈ ℝ𝑛, w ∈ ℝ𝑑

Vectors are assumed to be column vectors, i.e., 𝕪 ∈ ℝ𝑛×1

Option 1: Closed Form Solution

ℒ = 𝑀𝑆𝐸 =
σ𝑖

𝑛(𝑦𝑖−𝑤𝑇 Ԧ𝑥)^2

𝑛

Matrix notation will make our lives easy!
𝕏 ∈ ℝ𝑛×𝑑, 𝕪 ∈ ℝ𝑛, w ∈ ℝ𝑑

Vectors are assumed to be column vectors, i.e., 𝕪 ∈ ℝ𝑛×1

Is this a legal operation: 𝕪 − 𝑤𝕏?

Option 1: Closed Form Solution

ℒ = 𝑀𝑆𝐸 =
σ𝑖

𝑛(𝑦𝑖−𝑤𝑇 Ԧ𝑥)^2

𝑛

Matrix notation will make our lives easy!
𝕏 ∈ ℝ𝑛×𝑑, 𝕪 ∈ ℝ𝑛, w ∈ ℝ𝑑

Vectors are assumed to be column vectors, i.e., 𝕪 ∈ ℝ𝑛×1

Is this a legal operation: 𝕪 − 𝑤𝕏?

Is this a legal operation: (𝕪 − 𝕏 𝑤)(𝕪 − 𝕏𝑤)?

Option 1: Closed Form Solution

ℒ = 𝑀𝑆𝐸 =
σ𝑖

𝑛(𝑦𝑖−𝑤𝑇 Ԧ𝑥)^2

𝑛

Matrix notation will make our lives easy!
𝕏 ∈ ℝ𝑛×𝑑, 𝕪 ∈ ℝ𝑛, w ∈ ℝ𝑑

Vectors are assumed to be column vectors, i.e., 𝕪 ∈ ℝ𝑛×1

Is this a legal operation: 𝕪 − 𝑤𝕏?

Is this a legal operation: (𝕪 − 𝕏 𝑤)(𝕪 − 𝕏𝑤)?

Shape errors are the most
common errors you will face
when starting deep learning

Option 1: Closed Form Solution

ℒ = 𝑀𝑆𝐸 =
σ𝑖

𝑛(𝑦𝑖−𝑤𝑇 Ԧ𝑥)^2

𝑛

ℒ =
𝕪 − 𝕏𝑤 𝑇 𝕪 − 𝕏𝑤

𝑛

Matrix notation will make our lives easy!
𝕏 ∈ ℝ𝑛×𝑑, 𝕪 ∈ ℝ𝑛, w ∈ ℝ𝑑

Vectors are assumed to be column vectors, i.e., 𝕪 ∈ ℝ𝑛×1

Is this a legal operation: 𝕪 − 𝑤𝕏?

Is this a legal operation: (𝕪 − 𝕏 𝑤)(𝕪 − 𝕏𝑤)?

Shape errors are the most
common errors you will face
when starting deep learning

Option 1: Closed Form Solution

ℒ = 𝑀𝑆𝐸 =
σ𝑖

𝑛(𝑦𝑖−𝑤𝑇 Ԧ𝑥)^2

𝑛

ℒ =
𝕪 − 𝕏𝑤 𝑇 𝕪 − 𝕏𝑤

𝑛

ℒ =
𝕪𝑇𝕪 − 𝕪𝑇𝕏𝑤 − 𝑤𝑇𝕏𝑇𝕪 + 𝑤𝑇𝕏𝑇𝕏𝑤

𝑛

Matrix notation will make our lives easy!
𝕏 ∈ ℝ𝑛×𝑑, 𝕪 ∈ ℝ𝑛, w ∈ ℝ𝑑

Vectors are assumed to be column vectors, i.e., 𝕪 ∈ ℝ𝑛×1

Is this a legal operation: 𝕪 − 𝑤𝕏?

Is this a legal operation: (𝕪 − 𝕏 𝑤)(𝕪 − 𝕏𝑤)?

Shape errors are the most
common errors you will face
when starting deep learning

Option 1: Closed Form Solution

ℒ = 𝑀𝑆𝐸 =
σ𝑖

𝑛(𝑦𝑖−𝑤𝑇 Ԧ𝑥)^2

𝑛

ℒ =
𝕪 − 𝕏𝑤 𝑇 𝕪 − 𝕏𝑤

𝑛

ℒ =
𝕪𝑇𝕪 − 𝕪𝑇𝕏𝑤 − 𝑤𝑇𝕏𝑇𝕪 + 𝑤𝑇𝕏𝑇𝕏𝑤

𝑛

∇ℒ𝑤 =
−2𝕏𝑇𝕪 + 2𝕏𝑇𝕏𝑤

𝑛

Matrix notation will make our lives easy!
𝕏 ∈ ℝ𝑛×𝑑, 𝕪 ∈ ℝ𝑛, w ∈ ℝ𝑑

Vectors are assumed to be column vectors, i.e., 𝕪 ∈ ℝ𝑛×1

Is this a legal operation: 𝕪 − 𝑤𝕏?

Is this a legal operation: (𝕪 − 𝕏 𝑤)(𝕪 − 𝕏𝑤)?

Shape errors are the most
common errors you will face
when starting deep learning

Option 1: Closed Form Solution

ℒ = 𝑀𝑆𝐸 =
σ𝑖

𝑛(𝑦𝑖−𝑤𝑇 Ԧ𝑥)^2

𝑛

ℒ =
𝕪 − 𝕏𝑤 𝑇 𝕪 − 𝕏𝑤

𝑛

ℒ =
𝕪𝑇𝕪 − 𝕪𝑇𝕏𝑤 − 𝑤𝑇𝕏𝑇𝕪 + 𝑤𝑇𝕏𝑇𝕏𝑤

𝑛

∇ℒ𝑤 =
−2𝕏𝑇𝕪 + 2𝕏𝑇𝕏𝑤

𝑛

0 = −𝕏𝑇𝕪 + 𝕏𝑇𝕏𝑤

Matrix notation will make our lives easy!
𝕏 ∈ ℝ𝑛×𝑑, 𝕪 ∈ ℝ𝑛, w ∈ ℝ𝑑

Vectors are assumed to be column vectors, i.e., 𝕪 ∈ ℝ𝑛×1

Is this a legal operation: 𝕪 − 𝑤𝕏?

Is this a legal operation: (𝕪 − 𝕏 𝑤)(𝕪 − 𝕏𝑤)?

Shape errors are the most
common errors you will face
when starting deep learning

Option 1: Closed Form Solution

ℒ = 𝑀𝑆𝐸 =
σ𝑖

𝑛(𝑦𝑖−𝑤𝑇 Ԧ𝑥)^2

𝑛

ℒ =
𝕪 − 𝕏𝑤 𝑇 𝕪 − 𝕏𝑤

𝑛

ℒ =
𝕪𝑇𝕪 − 𝕪𝑇𝕏𝑤 − 𝑤𝑇𝕏𝑇𝕪 + 𝑤𝑇𝕏𝑇𝕏𝑤

𝑛

∇ℒ𝑤 =
−2𝕏𝑇𝕪 + 2𝕏𝑇𝕏𝑤

𝑛

0 = −𝕏𝑇𝕪 + 𝕏𝑇𝕏𝑤

𝕏𝑇𝕏 −1 𝕏𝑇𝕪 = 𝑤

Matrix notation will make our lives easy!
𝕏 ∈ ℝ𝑛×𝑑, 𝕪 ∈ ℝ𝑛, w ∈ ℝ𝑑

Vectors are assumed to be column vectors, i.e., 𝕪 ∈ ℝ𝑛×1

Is this a legal operation: 𝕪 − 𝑤𝕏?

Is this a legal operation: (𝕪 − 𝕏 𝑤)(𝕪 − 𝕏𝑤)?

Shape errors are the most
common errors you will face
when starting deep learning

Closed Form Solution

Advantages:
- Simple/fast to implement

Disadvantages:
- Need to invert: 𝕏𝕏𝑇 −1

- Matrix inversion is 𝑂 𝑛3

- 𝕏𝕏𝑇 May not be invertible
- Doesn’t necessarily exist for

other models

A Linear Classification Model

A Linear Classification Model

Linear Regression is a linear model for regression.
What’s a natural way to make a linear classifier?

A Classifier

Everything above the line (or hyperplane in
>2D) is classified as 1, everything below
the line as 0

𝑥1

𝑥2

ො𝑦 = 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 + 𝑏

A Classifier

Everything above the line (or hyperplane in
>2D) is classified as 1, everything below
the line as 0

How can you tell if a point is above
or below the line?

𝑥1

𝑥2

ො𝑦 = 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 + 𝑏

A Classifier

Everything above the line (or hyperplane in
>2D) is classified as 1, everything below
the line as 0

How can you tell if a point is above
or below the line?

𝑥1

𝑥2

ො𝑦 = 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 + 𝑏

If ො𝑦 = 0, the point is on the line,
If ො𝑦 > 0, the point is “above” the line,
If ො𝑦 < 0, the point is “below” the line

A Classifier

Everything above the line (or hyperplane in
>2D) is classified as 1, everything below
the line as 0

How can you tell if a point is above
or below the line?

𝑥1

𝑥2

ො𝑦 = 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 + 𝑏

If ො𝑦 = 0, the point is on the line,
If ො𝑦 > 0, the point is “above” the line,
If ො𝑦 < 0, the point is “below” the line

If ො𝑦 > 0, predict 1.
If ො𝑦 ≤ 0, predict 0.

Perceptrons: A Linear Classifier

(Our first building block of Deep Learning)

Biological Motivation
• Loosely inspired by neurons, basic working unit of the brain
• Serve to transmit information between cells

Biological Neuron Artificial Neuron (Perceptron)

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

The Perceptron

Inputs

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

Inputs are Ԧ𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑]

Features of the data

Predicting with a Perceptron

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

1. Take each of the inputs and
multiply by corresponding
weight

2. Sum the results, add bias term

Predicting with a Perceptron

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

1. Take each of the inputs and
multiply by corresponding
weight

2. Sum the results, add bias term

Until here, a Perceptron
and Linear Regression are

equivalent

Predicting with a Perceptron

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

1. Take each of the inputs and
multiply by corresponding
weight

2. Sum the results, add bias term
3. If output is above 0, return 1,

otherwise return 0

Predicting with a Perceptron

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

1. Take each of the inputs and
multiply by corresponding
weight

2. Sum the results, add bias term
3. If output is above 0, return 1,

otherwise return 0

Activation Function
(many more to come)

Predicting with a Perceptron

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

1. Take each of the inputs and
multiply by corresponding
weight

2. Sum the results, add bias term
3. If output is above 0, return 1,

otherwise return 0

Activation Function
(many more to come)

Activation Function
Operates on output of neuron

Understanding Weights

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

Understanding Weights

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

What would it mean for a
weight to be 0?

Understanding Weights

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

What would it mean for a
weight to be 0?

What would it mean for a
weight to be very positive?

Understanding Weights

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

What would it mean for a
weight to be 0?

What would it mean for a
weight to be very positive?

What would it mean for a
weight to be very negative?

Understanding Weights

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

What would it mean for a
weight to be 0?

What would it mean for a
weight to be very positive?

What would it mean for a
weight to be very negative?

How Strong are Linear Separators?

Image courtesy of: https://vitalflux.com/how-know-data-linear-non-linear/

MNIST

The most famous dataset in Deep Learning
Modified National Institute of Standards and Technology database

Image courtesy of Wikipedia

Motivation: Zip Code Recognition

http://yann.lecun.com/exdb/publis/pdf/matan-92.pdf

How Does a Computer know this
is a three?

Center is typically empty for 0’s.
How does this compare with 3’s?

Train, validation, and test sets

• Training Set: Used to adjust parameters of model

• Validation set — used to test how well we’re doing as we develop

• Prevents overfitting

• Test Set — used to evaluate the model once the model is done Train

Validation

Test

MNIST

• 60,000 Images in training set
• 10,000 Images in test set
• No explicit validation set

MNIST

• 60,000 Images in training set
• 10,000 Images in test set
• No explicit validation set

What do you suggest
we do?

A bit of a cliffhanger…

• How well do you think a perceptron will do on this task?
• Perceptrons are linear classifiers… what does it mean for images

to be linearly separable?
• Perceptrons have a discontinuous activation function, which is

not differentiable. How are we going to find good parameters
without a nice closed-form solution?

Recap
Linear Regression

Closed Form solution for finding optimal parameters

Matrix and Vector Notation

Recap

natural extension of linear models to binary classification tasks

Biological inspiration of activation threshold
Perceptrons

Linear Regression
Closed Form solution for finding optimal parameters

Matrix and Vector Notation

Only differ from Linear Regression in
terms of activation function

Recap

natural extension of linear models to binary classification tasks

Biological inspiration of activation threshold
Perceptrons

Linear Regression
Closed Form solution for finding optimal parameters

Matrix and Vector Notation

Only differ from Linear Regression in
terms of activation function

MNIST

Handwritten Digit Representation

Handwriting Classification Task Framing

	Slide 1: Deep Learning
	Slide 2
	Slide 3
	Slide 4: Key Ideas Review
	Slide 5: Today’s Goal: Learn about Perceptrons, the first building block of Neural Networks
	Slide 6: Linear Regression
	Slide 7: Linear Regression
	Slide 8: Linear Regression
	Slide 9: Linear Regression
	Slide 10: Linear Regression
	Slide 11: Option 1: Closed Form Solution
	Slide 12: Option 1: Closed Form Solution
	Slide 13: Option 1: Closed Form Solution
	Slide 14: Option 1: Closed Form Solution
	Slide 15: Option 1: Closed Form Solution
	Slide 16: Gradients
	Slide 17: Gradients
	Slide 18: Gradients
	Slide 19: Option 1: Closed Form Solution
	Slide 20: Option 1: Closed Form Solution
	Slide 21: Option 1: Closed Form Solution
	Slide 22: Option 1: Closed Form Solution
	Slide 23: Option 1: Closed Form Solution
	Slide 24: Option 1: Closed Form Solution
	Slide 25: Option 1: Closed Form Solution
	Slide 26: Option 1: Closed Form Solution
	Slide 27: Option 1: Closed Form Solution
	Slide 28: Option 1: Closed Form Solution
	Slide 29: Option 1: Closed Form Solution
	Slide 30: Closed Form Solution
	Slide 31: A Linear Classification Model
	Slide 32: A Linear Classification Model
	Slide 33: A Classifier
	Slide 34: A Classifier
	Slide 35: A Classifier
	Slide 36: A Classifier
	Slide 37: Perceptrons: A Linear Classifier
	Slide 38: Biological Motivation
	Slide 39
	Slide 40: Inputs
	Slide 41: Predicting with a Perceptron
	Slide 42: Predicting with a Perceptron
	Slide 43: Predicting with a Perceptron
	Slide 44: Predicting with a Perceptron
	Slide 45: Predicting with a Perceptron
	Slide 46: Understanding Weights
	Slide 47: Understanding Weights
	Slide 48: Understanding Weights
	Slide 49: Understanding Weights
	Slide 50: Understanding Weights
	Slide 51: How Strong are Linear Separators?
	Slide 52: MNIST
	Slide 53: Motivation: Zip Code Recognition
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Train, validation, and test sets
	Slide 64: MNIST
	Slide 65: MNIST
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: A bit of a cliffhanger…
	Slide 73: Recap
	Slide 74: Recap
	Slide 75: Recap

