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- Much less Supervised Fine Tuning (SFT) than previous models (e.g., GPT4)
- Uses Reinforcement Learning heavily (final part of this course)



Key Ideas Review

Train on Training 
set

Evaluate on 
validation Set

But what we 
really care about 
is performance 

on test set

Goal of supervised learning: Find good 
approximation of data

Supervised 
Learning

How to represent 
Input/Output

Input/Output need to be numbers

Classification: Predicting categorical 
outputs (y is discrete)

Regression: Predicting numerical 
outputs (y is continuous)



Today’s Goal: Learn about Perceptrons, the 
first building block of Neural Networks
• Optimization
• Perceptrons
• Introduction to MNIST
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𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters 
- m (slope)
-  b (bias)
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Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters 
- m (slope)
-  b (bias)

With multiple input features:
- Need a weight parameter 𝑤𝑖 for each feature xi

- 𝑦 = 𝑥1
𝑖
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𝑖
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Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters 
- m (slope)
-  b (bias)

With multiple input features:
- Need a weight parameter 𝑤𝑖 for each feature xi

- 𝑦 = 𝑥1
𝑖

⋅ 𝑤1 + 𝑥2
𝑖

⋅ 𝑤2
𝑖

+ ⋯ + 𝑥𝑑
𝑖

⋅ 𝑤𝑑

- Can be rewritten: 𝑦 = Ԧ𝑥 ⋅ 𝑤

Input Features Output Target

How do we find optimal 
parameter values?

Constant

1
1
1

𝑥4
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Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters
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Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

MSE (Mean Squared Error)

Generalization of derivatives to 
functions with multiple inputs

Is this guaranteed to find the 
global best parameter settings?

weight vector w ∈ ℝ𝑑



Gradients

The gradient of a function f is a vector of partial derivatives:
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The gradient of a function f is a vector of partial derivatives:

∇𝑓𝜃 = [
𝜕𝑓

𝜃1
,
𝜕𝑓

𝜃2
,
𝜕𝑓

𝜃3
, … ,

𝜕𝑓

𝜃𝑑
]

∇𝑓𝑤 tells us what happens 
to f with small adjustments 

to each parameter w
For a linear regression model with one 

input variable what dimension is ∇𝑓𝜃 in?

∇𝑓𝜃 ∈ ℝ?
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Closed Form Solution

Advantages:
- Simple/fast to implement

Disadvantages:
- Need to invert: 𝕏𝕏𝑇 −1

- Matrix inversion is 𝑂 𝑛3

- 𝕏𝕏𝑇  May not be invertible
- Doesn’t necessarily exist for 

other models



A Linear Classification Model



A Linear Classification Model

Linear Regression is a linear model for regression.
What’s a natural way to make a linear classifier?
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A Classifier

Everything above the line (or hyperplane in 
>2D) is classified as 1, everything below 
the line as 0

How can you tell if a point is above 
or below the line?

𝑥1

𝑥2

ො𝑦 = 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 + 𝑏

If ො𝑦 = 0, the point is on the line,
If ො𝑦 > 0, the point is “above” the line,
If ො𝑦 < 0, the point is “below” the line

If ො𝑦 > 0, predict 1.
If ො𝑦 ≤ 0, predict 0.



Perceptrons: A Linear Classifier

(Our first building block of Deep Learning)



Biological Motivation
• Loosely inspired by neurons, basic working unit of the brain 
• Serve to transmit information between cells 



Biological Neuron Artificial Neuron (Perceptron)

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

The Perceptron



Inputs

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

Inputs are Ԧ𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑]

Features of the data
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Output

1. Take each of the inputs and 
multiply by corresponding 
weight

2. Sum the results, add bias term



Predicting with a Perceptron

𝑥1
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𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

1. Take each of the inputs and 
multiply by corresponding 
weight

2. Sum the results, add bias term

Until here, a Perceptron 
and Linear Regression are 

equivalent
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σ
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1. Take each of the inputs and 
multiply by corresponding 
weight

2. Sum the results, add bias term
3. If output is above 0, return 1, 

otherwise return 0
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𝑤4

σ

𝑏

Output

1. Take each of the inputs and 
multiply by corresponding 
weight

2. Sum the results, add bias term
3. If output is above 0, return 1, 

otherwise return 0

Activation Function
(many more to come)



Predicting with a Perceptron

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

1. Take each of the inputs and 
multiply by corresponding 
weight

2. Sum the results, add bias term
3. If output is above 0, return 1, 

otherwise return 0

Activation Function
(many more to come)

Activation Function
Operates on output of neuron



Understanding Weights
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Understanding Weights

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

What would it mean for a 
weight to be 0?

What would it mean for a 
weight to be very positive?

What would it mean for a 
weight to be very negative?



How Strong are Linear Separators?

Image courtesy of: https://vitalflux.com/how-know-data-linear-non-linear/



MNIST

The most famous dataset in Deep Learning
Modified National Institute of Standards and Technology database

Image courtesy of Wikipedia



Motivation: Zip Code Recognition

http://yann.lecun.com/exdb/publis/pdf/matan-92.pdf





How Does a Computer know this 
is a three?







Center is typically empty for 0’s. 
How does this compare with 3’s?











Train, validation, and test sets

• Training Set: Used to adjust parameters of model

• Validation set — used to test how well we’re doing as we develop 

• Prevents overfitting

• Test Set — used to evaluate the model once the model is done Train

Validation

Test



MNIST

• 60,000 Images in training set
• 10,000 Images in test set
• No explicit validation set



MNIST

• 60,000 Images in training set
• 10,000 Images in test set
• No explicit validation set

What do you suggest 
we do?















A bit of a cliffhanger…

• How well do you think a perceptron will do on this task?
• Perceptrons are linear classifiers… what does it mean for images 

to be linearly separable?
• Perceptrons have a discontinuous activation function, which is 

not differentiable. How are we going to find good parameters 
without a nice closed-form solution?



Recap
Linear Regression

Closed Form solution for finding optimal parameters

Matrix and Vector Notation
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Biological inspiration of activation threshold
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terms of activation function



Recap

natural extension of linear models to binary classification tasks

Biological inspiration of activation threshold
Perceptrons

Linear Regression
Closed Form solution for finding optimal parameters

Matrix and Vector Notation

Only differ from Linear Regression in 
terms of activation function

MNIST

Handwritten Digit Representation

Handwriting Classification Task Framing
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