s.oP -1 ™
:) | R ¢ | ‘.
g ." .'6 ':’/ '. y . . * 0,. _ ‘n
: ’ : o ¢ : | 7 8 ‘;
CSCI 1470 - \ S C T
P Deep Leéarning
Eric E‘\‘Ning’ T B R 2
v .’.. al ® .'
- | Day%\@nﬂltlohql DMs and
S Wedr\esday, Ramfo‘rcement Learning« -
WA[9/25 . o e TN
. N : \ . ~_ * - - .
3 .’:‘ . - -
~ o ® »

-y

Logistics

* Weekly Quiz #9 is available now

Review of Generative Models

GAN: Adversarial / |, S Generator 1,
. . X X Z X
training D(x) G(z)

VAE: maximize x || Encoder 7 Decoder Ay
variational lower bound po(x|2z)
Flow-based models: x| Flow . oz . Inl/frse o x!
Invertible transform of f (x) [(2)

distributions
Diffusion models:. X0 - X1 - Xo . 7

Gradually add Gaussian - - - - - Riiatuiaintaiaiety R e
noise and then reverse

Sotirce: httne://lilianwengo githiih io/pno<t<s/2021-07-11-diffiicion-models/

But How do we specify what we want?

Can you generate an image of deep space for me?

Can you remove the people from this image?

Can you give me your best joke in image format?

| do' trust
stairs.

They're always
up to something.

Source: chatgpt

This is just one specific implementation

(

/’

Latent Space

@_

Lo

2

=¥

\Pixel Spacs

denoising step crossattention

x(T —-1)

Diffusion Process

|
)

6onditionin3

emantiq
Ma |
Text

Repres |
entations

‘.<-3] : X : g
-

switch skip connection concat

Source: High-Resolution Image Synthesis with Latent Diffusion Models https://arxiv.org/ndf/2112.10752

https://arxiv.org/pdf/2112.10752

Forward diffusion process (adding noise)

i 2 Latent Space Conditioning
@— & . Diffusion Process emantiq
Map
> i Denoising U-Net €p N2p Textl
TR T PR Repres |
L= entations
@4?‘ pafl |2 |2 IH[Q] (2
/] KV \KV]| || |\KV] KV
2 lrll L= T 2r ||
Pixel Space, [N ~
5 —_—
v . SLE “T
denoising step crossattention switch skip connection concat - J

Source: High-Resolution Image Synthesis with Latent Diffusion Models https://arxiv.org/ndf/2112.10752

https://arxiv.org/pdf/2112.10752

Forward diffusion process (adding noise)

@4/, D

,,3(.

KV \KV)||\KYV] KV

e L oot it e il
..;-K..A._

eixel Spac9

i 2 Latent Space Conditioning
@— & . Diffusion Process emantiq
Map
P i Denoising U-Net €g Textl
TR T i Repres |
L= entations
P) (@@ [@

denoising step crossattention

Single denoising step

guses g

switch skip connection concat

Source: High-Resolution Image Synthesis with Latent Diffusion Models https://arxiv.org/ndf/2112.10752

https://arxiv.org/pdf/2112.10752

Forward diffusion process (adding noise)

Latent Space Conditioning

. Diffusion Process emantiq
Ma

Ti extl

Repres |
entations

i €D

euxel Spac9
Repeated many times Single denoising step 70
denoising step crossattention switch skip connection concat - J

Source: High-Resolution Image Synthesis with Latent Diffusion Models https://arxiv.org/ndf/2112.10752

https://arxiv.org/pdf/2112.10752

Encoder/Decoder

4 A

Forward diffusion process (adding noise)

Latent Space Conditioning,

. Diffusion Process | emantiq
Ma |

Text

Repres
entations

& [D

- /
@xel Spacg
R ted ti i iSi 70
epeate manx Imes Single denoising step
N

denoising step crossattention switch skip connection concat =

Incorporate other
modes of information

Source: High-Resolution Image Synthesis with Latent Diffusion Models https://arxiv.org/ndf/2112.10752

https://arxiv.org/pdf/2112.10752

Encoders and Decoders are back!

Why might encoders and
decoders be useful now?

Denoising U-Net €g zp Text

| Repres }
entations |

(AT Latent Space Conditioning)
H - Diffusion Process | emanti
) B - Ma
(T 1)
i a -I) i-

Pixel Space T

N b -

= S B o

denoising step crossattention switch skip connection concat

Encoders and Decoders are back!

These are intended to be very
general models

* Work with language prompting
* Incorporate existing images

* And any other mode of input
you can think of

Pixel Space

pd

denoising step crossattention

i

D H

Why might encoders and
decoders be useful now?

Latent Space

Denoising U-Net €

i) KV}LT

Diffusion Process ——

2T

’Conditionina

emanti
Ma
Text

Repres
entations

Q
KV

tA

switch

skip connection concat

7o

_

Encoders and Decoders are back!

These are intended to be very
general models

Embeddings are a sort of
“common language” for all types
of input

2

Why might encoders and
decoders be useful now?

Latent Space

bq

denoising step crossattention

Pixel Space |

Diffusion Process ————»

Denoising U-Net € 2T

\

KV KV}LTV KV

Q
KV

tA

switch skip connection concat

’ ’Conditioning

emanti
Ma
Text

/Repres
entations

Conditional VAE

Input

-

Encoder

latent space

/

Latent
Representation

https://towardsdatascience.com/understanding-conditional-variational-autoencoders-cd62b4f57bf8

/

N (4, 0)

\

Label is concatenated to input of
encoder and decoder (or an
embedding based on the label)

Labelis just one more piece of
useful information

\

Decoder Output

—_—

4

b

denoising step crossattention

Pixel Space) |

Conditioning in Diffusion Models

Latent Space B 'Conditionina

Diffusion Process ——» er'aanti
| a; l
Denoising U-Net € 2T Text

7Repres

entations
l mages

; .
g ,/ Additional modelis trained

KV

Why don’t we add any extra
info to the input to the
encoder?

tA

switch

=
l to convert other
skip connection concht | information into encodings

Additional information can
be concatenated or used in
cross attention

Cross attention in Language Diffusion Models

(1) Contrastive pre-training

Pepper the
aussie pup

>

Text
Encoder

Image
Encoder

Cross-attention computes attention
scores between text and image
encoding Probabittes

Cross-attention

}

!

!

Feed
Forward
Y A J 4 A 4
Encoder f_t=Add&Norm ~
Ty, | T | Ts w | T —{ Add & Norm] T
Feed Attention
) Forward 77 Nx
- - i]
I|'Tl 1]'[2]]'I_‘; l|']'p; Nix 'm%
~>{_Add & Norm] o
Masked
Multi-Head Multi-Head
12 ‘T 1 IZ_T?. lz'T} 12 'TN Attention Attention Decoder
t A
& 7\ 7
I3T) | 13Ty | 13Ty I3 Ty Positional D q Positional
Encoding ;% Encoding
. . . . Input Output
: : K : Embedding Embedding
Iny'Ty | Iy Ty | Iy Ty Iy Ty Inputs Outputs
| (shifted right)

Source: “Attention Is All You Need” (https://arxiv.org/abs/1706.03762)

1 64 64

l | N ET 128 64 64 2
input output
|mat?lg > > o **1*| segmentation
[} (= ooff OO
g 9 & & map
. - SEE § 14z
Convolutional network originally <| 5] % ol o ol o
™| Off
designed for segmentation 5| B 5

' 128 128
256 128

>
o o~ L]
Q ol ©
= ol ®
N H =

512 256

> “g[l'tl’l =» conv 3x3, ReLU
= o™ 3
- o

= copy and crop

2842
2822
2802

1024 512
- 3 [~ § max pool 2x2
Segmentation Task = _* & 4 up-conv 2x2
£ %-E E =» CONV 1x1

Source: U-Net: Convolutional Networks for Biomedical Image Segmentation

Quick Detour into segmentation

a-b C%d

Fig. 3. HeLa cells on glass recorded with DIC (differential interference contrast) mi-
croscopy. (a) raw image. (b) overlay with ground truth segmentation. Different colors
indicate different instances of the HeLa cells. (c) generated segmentation mask (white:
foreground, black: background). (d) map with a pixel-wise loss weight to force the
network to learn the border pixels.

U-Nets

Last class, we were agnostic on what
the neural network in a diffusion
model actually is...

Why use a U-net?
1. Convolutions > MLPs

2. Learn hierarchical features (with
skip/residual connections)

3. Good at handling multi-scale
iInformation

input
image |a- -
tile

WD M

l_llbl:llb:l

ol || OUPUL
71| segmentation
gl ¢ & 5 map

=»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» cOnv 1x1

4 RY ™ Latent Space
@—? . Diffusion Process
) P if Denoising U-Net €y N zp
o)
2T
@xel Spacg

Conditioning

@ e

denoising step crossattention

€A

switch

skip connection concat

And how do
we find the
vector 749 ?

Depends on
the task. aesinme

original paper that trains separate models
for different tasks. If you had enough data
you can train a single model for lots of
different types of inputs and tasks.

Step 1: Train a language model Any questions?
Step 2: Train diffusion model conditioned on language model

(requires dataset of captioned images) 7 ? 7

™ @

o) ?
Text-to-Imagg’Synthesis on LAION. 1.45B Model. /
’A street sign that reads ’A zombie in the ’An image of an animal "An illustration of a slightly ’A painting of a ’A watercolor painting of a ’A shirt with the inscription:
“Latent Diffusion” ’ style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” ’

"~

.
(" LATENT
DIFFUSION

T P

What we’ve done so far

Different Learning Paradigms

Supervised Learning Unsupervised Learning
Training Training Training
Data Labels Data
/ \ /\ EtEtE
f ("model”) —2% Loss function 7 ("model”) —22 . | oss Function g

0‘ \ o&
K Optimizer % Optimizer <

We've focused on this thus Far...

Reinforcement Learning

"Ll Agent |

g Uy

reward
R,
| Rl_'_ il
I LTS
5.
-
1 L

Environment J..._

action
A_.

And rewards an agent I Agent interacts with environment

(or penalizes the agent)

zlale reward

s,

Environment

Environment transitions
to new state

Why Reinforcement Learning?

* Reinforcement learning doesn’t require data in the same way that
supervised and unsupervised learning do

* There is no dataset X required, just a model of the environment
* Agents learn from interacting with the environment

This is how you got so smart... ’,[Agent}

state reward action
s, | IR A,

R |
5. | Environment]-l

b

ry

RL: Sequential Decision Making

Sequential decision making describes a situation where the
decision maker (DM) makes successive observations of a
process before a final decision is made.

What's a common example of a sequential
decision making process?

- Playing games!
- Let’s look at a specific example...

This Photo by Unknown Author is licensed under CC BY-SA-NC

Atari!

Mnih et al. Playing Atari with Deep Reinforcement Learning, 2013

Markov Decision Processes (MDPs)

How can we formalize the problem we are trying to solve? What
components does it have?
:[Agent}
state reward action

5, R, A
Rl_ i il .
5. | Environment]...

b

Markov Decision Processes (MDPs)

* Set of States: S
* All possible configurations the world can bein

* Set of Actions: A
* All possible actions the agentis able to take

e Reward Function: R: S - R

state

"L| Agent |

reward
R,

R

)

R
- i} -

e Reward function takes in a state and returns a number

 Transition Function: T: S XA XS - R

L

Environment Jq—

* |f you take an action in a specific state, what’s the probability you

transition to any other state?

action

States

What would the state for
breakout be?

Option: Location of paddle, ball, and
all breakable blocks

Option: The image of the game...

Actions

What actions can the
agent take?

A = Left or Right

Reward Function

What is the reward function?

There is no predefined reward function necessarily

We can use:

1. The score (get reward when a block is broken)

2. Large penalty for losing, Large reward for winning
3. And many other combinations of things

Transition Function

In general, MDPs describe stochastic processes. There can be
randomness in what happens.

Breakout is deterministic, the physics of the ball is known and when
you tell your paddle to go left it goes left.

Solving MDPs

What would it mean to solve an MDP, like breakout?

Policy: A function : S — A, that takes in a state and returns an
action

We seek the best possible policy 77, that could tell us the best
action to take in any state.

But how do we know one policy is better than another?
If we try to learn a policy, what would our loss function be?
And many many more remaining questions... for next time

	Slide 1
	Slide 2: Logistics
	Slide 3: Review of Generative Models
	Slide 4: But How do we specify what we want?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Encoders and Decoders are back!
	Slide 12: Encoders and Decoders are back!
	Slide 13: Encoders and Decoders are back!
	Slide 14: Conditioning Step
	Slide 15: Conditioning in Diffusion Models
	Slide 16: Cross attention in Language Diffusion Models
	Slide 17: U-NET
	Slide 18: Quick Detour into segmentation
	Slide 19: U-Nets
	Slide 20
	Slide 21
	Slide 22
	Slide 23: What we’ve done so far
	Slide 24
	Slide 25: Why Reinforcement Learning?
	Slide 26
	Slide 27
	Slide 28: Atari!
	Slide 29: Markov Decision Processes (MDPs)
	Slide 30: Markov Decision Processes (MDPs)
	Slide 31: States
	Slide 32: Actions
	Slide 33: Reward Function
	Slide 34: Transition Function
	Slide 35: Solving MDPs

