CSCI 1470

Eric Ewing

Monday, 4/7/25

Deep Learning

Day 25: Diffusion Models

ChatGPT: "Generate an image of deep space" 4/7/25

Denoising Auto Encoders (DAEs)

10 15 20 25

0 5

https://www.omdena.com/blog/denoising-autoencoders

Denoising Auto Encoders (DAEs)

What if our images were even noisier?

20 25 0

https://www.omdena.com/blog/denoising-autoencoders

Denoising Auto Encoders

Denoising all the noise in one step may be too hard to learn. What if we added and removed noise incrementally?

Data

Generative reverse denoising process

Variational Autoencoders

We can represent a VAE as a probabilistic graphical model

Encoder generates probability distribution q(z|x)

Decoder estimates p(x|z)

Hierarchical Features

Each intermediate layer in a neural network can be seen as learning a set of **intermediate features** based on the previous **intermediate outputs**.

Source: https://ermongroup.github.io/blog/hierarchy/

Idea: train K pairs of encoders and decoders

Each decoder is trained to reverse the associated encoder's operations

How many encoders and decoders do we need to learn?

Encoders (forward process)

What if all latent variables *z* have the same size?

Most encoders and decoders have the same input/output size

But what if **everything** had the same dimensions

What if all latent variables *z* have the same size?

Need special **first encoder**, special **last decoder** to go from embedding size to original input size

A hierarchical VAE that keeps the dimensions the same can use the same decoder and encoder for all steps

A hierarchical VAE that keeps the dimensions the same can use the same decoder and encoder for all steps

Denoising VAEs

If the size of the encoding in a VAE is the same size as the input, the model is no longer doing dimensionality reduction...

So why would we want this?

The forward process adds noise The reverse path reverses this process

But we don't need to learn the encoders, adding noise isn't a learned process!

Source: https://www.researchgate.net/figure/Schematic-of-the-diffusion-model-training-process_fig1_383920783

Adding Noise

What if each encoder transitions sample the input with some gaussian noise?

reparam. trick!

reparam. trick!

Individual (known) Gaussians!

Diffusion Models

Are hierarchical VAEs with the following assumptions:

- All dimensions are the same (input size, encoding size)
- Encoder transitions are known gaussians centered around their previous inputs

Why Call it Diffusion?

Diffusion of gas particles (and other physical things)

Start off organized

Transitions to "random noise"

The Decoder

Diffusion models seek to learn a single neural network: a de-noising decoder

What form does x_{t-1} take?

$$q(x_{t-1}|x_0) = \mathcal{N}(x_{t-1}|x_0, \alpha_{t-1}^2 I)$$

$$x_t = x_0 + \alpha_{t-1}\epsilon$$

$$\begin{array}{c|c} x_t \\ t \end{array} \ \hline pecoder \, {\tt NN} \end{array} \ \hat{x}_0 \ \hline {\tt P} & x_{t-1} \end{array} \\ \hat{x}_{t-1} = \mu_{\rm dec} + \sigma_{\rm dec} * \epsilon \end{array} \\ \hat{x}_{t-1} = \mu_{\rm dec} + \sigma_{\rm dec} * \epsilon \end{array} \\ \end{array}$$
 What is the ground truth for μ_{t-1} ?

Does the decoder even need to predict σ ?

Denoising Diffusion Models

Learn a single decoder network

- Input is image with added noise
- Output is predicted image with noise removed

How To Generate New Samples

Idea 1: sample point from $\mathcal{N}(0, I)$, run decoder with t=T to generate \hat{x}_0 Issue: Doesn't work that well... that was the entire motivation for having multiple steps

Idea 2: sample point from $\mathcal{N}(0, I)$, iteratively generate \hat{x}_{t-1}

But how do we actually generate \hat{x}_{t-1} when our decoder generates \hat{x}_0 ?

Noise Schedules

- What should the value of T be?
- How many steps of forward/reverse processes should we run?
- How much noise should be added at each step?

Amount of noise and number of steps determined by a *noise schedule* (hyperparameter)

Linear Schedule (equal noise added at each timestep)

Noise Schedules

- What should the value of T be?
- How many steps of forward/reverse processes should we run?
- How much noise should be added at each step?

Amount of noise and number of steps determined by a *noise schedule* (hyperparameter)

Cosine Schedule (small amounts of noise first, then fast)

Diffusion Training

Algorithm 1 Training		Algorithm 2 Sampling
1: repeat		1: $\boldsymbol{x}_T \sim \mathcal{N}(0, \mathbf{I})$
2:	$oldsymbol{x}_0 \sim q(oldsymbol{x}_0)$	2: for $t = T,, 1$:
3:	$t \sim \texttt{Uniform}\left(1,,T ight)$	3: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}) \text{ if } t > 1, \text{ else } \boldsymbol{\epsilon} = 0$
4:	$oldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$	4: $\boldsymbol{x}_{t-1} = \hat{\boldsymbol{x}}_{\theta}(\boldsymbol{x}_t, t) + \alpha_{t-1}\epsilon$
5:	Take gradient descent step on	5: end for
6:	$ abla_{ heta} oldsymbol{x}_0-\hat{oldsymbol{x}}_{ heta}(oldsymbol{x}_0+lpha_toldsymbol{\epsilon},t) ^2$	6: return \boldsymbol{x}_0
7: until converged		

Examples

 Model trained on CelebA dataset

Source: https://yang-song.net/blog/2021/score/

Examples

Model trained on CIFAR-10

Source: https://yang-song.net/blog/2021/score/

Visual Auto-Regressive Generation

Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction