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Recap: Supervised Learning

Is it an image of someone cooking?

Input: X Output: Y

- Supervised learning requires labels ”Cooking?”
- Learn afunction that takes in input

features and outputs labels

What are some pros and cons of supervised learning?




Recap: Supervised Learning

Pros: Cons:

- Can produce very high - Reliant on availability of
quality models with labels
sufficient data - Reliant on quality of labels

- Performance is easy to
measure (e.g., accuracy)



What’s Left?

Unsupervised Learning: Learning without labels

Reinforcement Learning: Learning from experiences
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This Week in Deep Learning

ChatGPT 40 added image generation and editing Give this cat a detective hat and a monocle

capabilities

- ChatGPT usedto rely on Dall-E for image
generation, now they’ve introduced a new model

- Reliably incorporates text commands and
improved image generation capabilities




What might this look like?
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(Multi-modal learning)

Take in multiple modes of input (text, images, etc.)

Source: OmniGen: Unified Image Generation: https://arxiv.org/pdf/2409.11340




What might this look like?

VAE: Variational Auto-Encoder
Noise: for “Diffusion” process

What’s this?
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And This?

Source: OmniGen: Unified Image Generation: https://arxiv.org/pdf/2409.11340



Foundation Models

Key Question: What is the equivalent of Language Modeling for data
other than natural language? (From last class)

Desired Properties:

1. No need for human labeling

2. Large amount of data available

3. Ability to learn a “general” representation of the data

One such method forimages:
Can you output the same
image that comes as input?

g —| Encoder| — Decoder




Autoencoders

Autoencoder: an encoder-decoder architecture that
tries to produce its own input
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But what’s hard about this? It’s very easy to learn a function that
outputs the input to the function (i.e., the identity function)




Autoencoders
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Encoder —_— Decoder

Vector in embedding space (latent space)
Much smaller than the original input size




Convolutional Autoencoders: Encoding

Same as Conv Nets from before: Encoding
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Autoencoders: Decoding

* Convolution as we know it only keeps resolution same or decreases it
* How do we go up in resolution?




Transposed Convolution

e Convolution Idea: Slide kernel
along an input matrix

Blue: output
Green: input

* Transpose Convolution:
Blue: Input

Green: Output

Source: https://github.com/vdumoulin/conv_arithmetic/tree/master
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Source: https://d2l.ai/chapter_computer-vision/transposed-conv.html




Transpose Convolution in Tensorflow

tf.nn.conv2d transpose(input, filters, output_shape, strides, padding='SAME’)

4D tensor of shap€ [batch, height, 4-D Tensor 4“ length 4 1D tensor representing

width, in_channels] [height, width, output_channels, in_channels] the output shape. Strid(‘?‘s alorTg String
each dimension representing
(list of integers) type of padding

D OC U m e n ta tl 0 n h e I'e: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d




Specifying Output Size

- An image can be the result of the same

convolution on images of different resolution

- We need to specify which one we want.
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Any questions?

o 222
Transpose Convolution in Keras \

tf.keras.layers.Conv2DTranspose (filters, kernel size, strides, padding='SAME’)

== 7

Number of Filters

(Integer) Size of Convolution Strides along String
Window (tuple) each dimension representing
(list of integers) type of padding

Note: Output Shape is inferred, but can be specified via the “output_padding” parameter

Documentation here; https://www.tensorflow.ora/api_docs/python/tf/keras/layers/Conv2DTranspose




Convolutional Autoencoder
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Standard Convolutions Transpose Convolutions




Loss Function

What do you think is an appropriate loss function?

Reconstruction loss (MSE): How far is each output pixel from the corresponding input pixel?




Autoencoders

What do Autoencoders actually learn?
1. Encoder learns a dimensionality reduction (from image to vector)

2. Decoderlearns animage generation function (from vector to image)

Encodings of MNIST data points with a trained !Enc.:oder.s can be usedto learn
autoencoder (dimensionality reduced further by PCA) Insights into structure of data

Decoders can be used to generate
“new” images



Generating Images

* How can we generate a “new” image
using a decoder?

* Sample a vector in latent space and
send it to the decoder...

* But how do you choose which vector?

* What if you wanted to generate a
specific image? How would you find
the right vector?



Issues with Autoencoders

* VVectors close together in latent space may
not produce similar outputs

* Tend to overfit data (struggle to produce
“new” outputs)

How to address issues with overfitting
outputs? Try to learn more variation in
outputs.



Issues with Autoencoders

What might a better latent space look like for generation?

Autoencoder Variational Autoencoder



Building up the VAE Architecture

If we were to describe an autoencoder functionally:

Output = Decoder(Encoder(Input))
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Building up the VAE Architecture

For variational autoencoders, we also do a random sampling operation
at the bottleneck

Output = Decoder(random_sample(Encoder(Input)))
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How does random sampling in latent space
lead to variation?
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« The random sampling should be
designed to produce random
points in latent space that are
close to the output of the
encoder

« Nearby points in the latent space
should decode to similar images



How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))
* We want the sample to be close to the encoder output
* One option: sample from a Gaussian centered at Encoder(Input)

What can we modify?
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How should random sample be defined?

Output = Decoder(random_sample(Encoder(Input)))
« We want the sample to be close to the encoder output
* One option: sample from a Gaussian centered at Encoder(Input)

» Use two dense layers to convert the encoder output into the mean
and standard deviation of the Gaussian
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Training a VAE

Two goals:
1. Reproduce an output similar to the input (Input = Output)
2. Have some variation in our output (Input # Output )

* Seems like two conflicting goals!
* How do we resolve these two goals?
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Weighted Combination of Losses

L, =loss associated with producing output similar to input

L, =loss associated with producing output with some variation to
input

L =1L+ Lo
Total Loss: ‘
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Remaining Questions

* Backprop requires that each individual step of a neural network be
differentiable. VAEs sample from a Gaussian. Is that
differentiable?

* How do we encourage variation in output?

* How do we generate desired types of outputs? (i.e., how do we
incorporate prompts)
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Recap

I Unsupervised Learning I

I Autoencoders I

Variational Autoencoders
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