
Deep Learning

Eric Ewing

CSCI 1470

Friday,
3/14/25

Day 22: Transformers

Transformers’ 
home: Cybertron



The Plan

• Finish Supervised Learning portion of class this week
• Today: Transformers
• Friday: LLMs and GPT

• After Break:
• Unsupervised Learning
• Reinforcement Learning

• Weekly Quiz is out



Review

• Seq2Seq modeling task using 
encoder-decoder architecture

• Attention measures similarity 
between embeddings, 
calculates scores, and ends 
with a weighted sum of 
vectors.















The Transformer



Components

• Self-Attention
• Cross-Attention
• Position Encoding
• Norm
• Feed-Forward Networks







Key Vectors



Key Vectors

Query Vector

To determine how much 

attention a word should 

pay to each other other, we

compute a query vector for 

the word and compare it to 
a key vector for every 

other word...



Key Vectors

Query Vector

To determine how much 

attention a word should 

pay to each other other, we

compute a query vector for 

the word and compare it to 
a key vector for every 

other word...



Key Vectors

Query Vector

To determine how much 

attention a word should 

pay to each other other, we

compute a query vector for 

the word and compare it to 
a key vector for every 

other word...

Which use use to compute 
the alignment scores 𝑎𝑡,𝑖



To determine how much 

attention a word should 

pay to each other other, we

compute a query vector for 

the word and compare it to 
a key vector for every 

other word...

Which use use to compute 
the alignment scores 𝑎𝑡,𝑖

0.5

0.5

0.5

0.25

0.25

0.5



To determine how much 

attention a word should 

pay to each other other, we

compute a query vector for 

the word and compare it to 
a key vector for every 

other word...

Which use use to compute 
the alignment scores 𝑎𝑡,𝑖

0.5

0.5

0.5

0.25

0.25

0.5

Values



To determine how much 

attention a word should pay to 

each other other, we

compute a query vector for the 

word and compare it to a key 
vector for every other word...

Which use use to compute the 
alignment scores 𝑎𝑡,𝑖

To produce the output vector, 
we sum up the value vectors 

for each word, weighted by the 

score we computed in step 1

0.5

0.5

0.5

0.25

0.25

0.5

Values

𝑧𝑡







Scaled Dot Product Attention

Generate Q, K, V, by 
multiplying word 
embedding X by weight 
matrix (i.e., pass through 
a fully connected layer)

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾

𝑑𝑘

𝑉



Multi-Headed Attention
Similar to convolutional layers with multiple filters, 
we can have “multi-headed attention”

MultiHead 𝑄, 𝐾, 𝑉 = Concat head1, … , headh 𝑊0

Where: ℎ𝑒𝑎𝑑𝑖 = Attention(QWi
q

, KWi
k, VWi

v)

Separate learned fully-
connected layer for each head i 
and for each of (Q, K, V)

Projected Attention: 
Project (Q, K, V) with 
learned parameters 
𝑊𝑞, 𝑊𝑘, 𝑊𝑣



Masked Multi-Headed Attention

In the decoder self attention, there is 
a “Mask”…

Remember, the target sequence is 
something we are producing 
sequentially.

Words early in the output should not 
be able to attend to words later in the 
output.

The mask restricts attention only to 
previous words/targets.



Masked Multi-Headed Attention

Alternatively, for practical 
reasons we may feed in 
“padding” with our inputs (i.e., 
to run batches we need inputs 
to be the same size)

We don’t want our real words to 
attend to our padding (empty) 
words



Cross Attention

• Self-Attention is how much each input “attends” to every other 
input

• Cross-Attention is how much every output “attends” to every input 
(i.e., our original motivation for attention)



Cross-Attention

Uses V, K from encoder, Q from 
Decoder



Transformer

Self Attention

Cross-Attention
What’s left?
1. Position Encoding
2. Norm



Position Encoding

• Part of the original motivation behind using RNNs for sequence 
data was to incorporate the structure of the problem (i.e., that 
order matters in the sequence)

• Attention (so far) does not care about the order that inputs arrive, 
all the operations are symmetric

• How can we get our networks to realize that there is an ordering to 
our inputs without using RNNs?

What’s the difference between:
1. The cow jumped over the moon
2. Over the jumped cow moon the
Word order matters!



Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e., 
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑 )

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑 )

Want: a unique encoding 
(vector) for every value of 
position



Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e., 
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑 )

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑 )

1. Fix a size for the output of your 
Position embedding d (has to match 
size of embeddings/projections)



Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e., 
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑 )

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑 )

1. Fix a size for the output of your 
Position embedding d (has to match 
size of embeddings/projections)

2. At each index of the encoding, 
evaluate the proper formula (i.e., even 
positions use sin, odd positions use 
cos)



Positional Encoding

“We chose this function because we hypothesized it would allow the 
model to easily learn to attend by relative positions, since for any fixed 
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

𝑃𝐸 𝑝𝑜𝑠 + 𝑘 = 𝐴 ⋅ 𝑃𝐸(𝑝𝑜𝑠)

Any Linear function 
can be represented as 
a matrix multiplication



Positional Encoding

For every pair of adjacent values in the position encoding

𝐴 ⋅
sin 𝑐 ⋅ 𝑝𝑜𝑠

cos 𝑐 ⋅ 𝑝𝑜𝑠
=

sin 𝑐 ⋅ (𝑝𝑜𝑠 + 𝑘)

cos 𝑐 ⋅ (𝑝𝑜𝑠 + 𝑘)

𝐴 = cos c⋅𝑘 , sin 𝑐⋅𝑘
−sin c⋅𝑘 , cos 𝑐⋅𝑘



Normalization

BatchNorm: Normalize outputs of neurons based on mean and 
standard deviation of the values for a batch of inputs
Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)
2. When batches are small, mean and standard deviation can vary 

highly

LayerNorm: Instead of normalizing based on the batch dimension, 
normalize the outputs of a layer based on the mean and standard 
deviation of the outputs of that layer.



LayerNorm

𝑦 =
𝑥 − 𝐸 𝑥

𝑠𝑡𝑑 𝑥
∗ 𝛾 + 𝛽

Outputs before normalization 
(i.e., inputs to LayerNorm layer)

Normalization

Two learnable 
parameters, because… 
why not, it’s deep 
learning… (optional)



Transformer

All intermediate outputs have same 
dimension, only one hyperparameter for 
dimension (many more for number of heads, 
number of encoder/decoders Nx)



Transformer

Transformers are… complicated
They have many unique components, unlike networks we’ve covered so far
• CNNs can be large, but they only really have 2 components: 

Convolutions and linear layers
• The internals of an RNN can be complicated, but it’s 3 or 4 operations

Why do they work so well?



Transformer Strengths

1. Attention is faster than RNNs (𝑛 ≪ 𝑑)
2. Don’t require sequential operations, like RNNs
3. Have a lower path length (how many operations does it take for information about words n 

distance apart to spread to each other)



Transformer Strengths

LLaMA: Open and Efficient Foundation Language Models

Deep Networks do better. More parameters are better. 
Transformers have many learnable parameters.



Transformer Weaknesses

• Transformers are not good at small scale tasks, they have many 
parameters and tend to overfit easily.

• There are really not that many hyperparameters in transformers, 
just the number of attention heads, number of layers, and 
embedding size.
• Hard to get them to not overfit

Why is this weakness not actually a problem?



Large Language Models: Friday

The bigger the better



GPT-2 Official Open Source Repository: 
https://github.com/openai/gpt-2/blob/master/model_card.md 

https://github.com/openai/gpt-2/blob/master/model_card.md


Recap

Transformers consist of a set of 
encoders and decoders that use 
attention to make predictions for 
sequence tasks.

They have a lot of learned parameters


	Slide 1
	Slide 2: The Plan
	Slide 3: Review
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: The Transformer
	Slide 11: Components
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Scaled Dot Product Attention
	Slide 24: Multi-Headed Attention
	Slide 25: Masked Multi-Headed Attention
	Slide 26: Masked Multi-Headed Attention
	Slide 27: Cross Attention
	Slide 28: Cross-Attention
	Slide 29: Transformer
	Slide 30: Position Encoding
	Slide 31: Positional Encoding
	Slide 32: Positional Encoding
	Slide 33: Positional Encoding
	Slide 34: Positional Encoding
	Slide 35: Positional Encoding
	Slide 36: Normalization
	Slide 37: LayerNorm
	Slide 38: Transformer
	Slide 39: Transformer
	Slide 40: Transformer Strengths
	Slide 41: Transformer Strengths
	Slide 42: Transformer Weaknesses
	Slide 43: Large Language Models: Friday
	Slide 44
	Slide 45: Recap

