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The Plan

* Finish Supervised Learning portion of class this week

* Today: Transformers
* Friday: LLMs and GPT

e After Break:

* Unsupervised Learning
* Reinforcement Learning

* Weekly Quiz is out



Review

* Seq2Seq modeling task using
encoder-decoder architecture

* Attention measures similarity
between embeddings,
calculates scores, and ends
with a weighted sum of
vectors.
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Transformer Model Overview

 The Transformer model breaks
down into Encoder and Decoder
blocks.

« At a high level, similar to the
seq2seq architecture we've seen
already...

« ..butthere are no recurrent nets
inside the Encoder and Decoder
blocks!
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Transformer Model Overview

The Transformer model breaks
down into Encoder and Decoder
blocks.

At a high level, similar to the
seq2seq architecture we've seen
already...

...but there are no recurrent nets
inside the Encoder and Decoder

blocks!

For better performance, often
stack multiple Encoder and
Decoder blocks (deeper network)
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Transformer Model Overview

* Let's look at what goes on inside

one of these Encoder blocks
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Encoder Block Map
A

These per-word output I
vectors are analogoustothe EEFD
LSTM hidden states from the

seg2seq2 model

* They should capture “what
information about the input
sentence is relevant to
translating this word?”

Words in input sentence —

|

|
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Encoder Block Map

= =2
1

 Encoder block breaks down into r. [T
A

two main parts: Self-Attention, and S
P - :

Feed Forward layers.
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Neural Network Neural Network
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Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/



Encoder Block Map

\S

Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Self-Attention layer is applied to
each word individually. —

)

Feed Forward Feed Forward
Neural Network Neural Network

Self-Attention

- F F
X1 | | | . X2
Thinking Machines

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/
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Components

Self-Attention

* Cross-Attention

* Position Encoding

* Norm

* Feed-Forward Networks
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Self-Attention:

Input’s attention on itself

The_ The_
animal_ animal_
didn_ didn_
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too_ too_
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Self-Attention: Overview

The big idea:

Self-attention computes the output vector z;
for each word via a weighted sum of vectors
extracted from each word in the input
sentence

Here, self-attention learns that “it” should
pay attention to “the animal” (i.e. the entity
that “it” refers to)

Why the name self-attention?
This describes attention that the input
sentence pays to itself
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Key Vectors i:

The
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Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...
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Self-Attention: Input’s attention on itself

Key Vectors

What do we do next?

|

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...
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Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;
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Self-Attention: Input’s attention on itself

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;
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Self-Attention: Input’s attention on itself

0.5

What do we do next?

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;
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Self-Attention: Input’s attention on itself

To determine how much
attention a word should pay to
each other other, we
compute a for the
word and compare itto a

for every other word...

Which use use to compute the
alignment scores a ;

To produce the output vector,
we sum up the

for each word, weighted by the
score we computed in step 1
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Self-Attention: Details
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Self-Attention: Details

Input Machines

Embedding X,/ [ | | |

Queries o =
Extract 3
vectors from -
each word Keys E=E =
embedding

Values { =

Each vector is obtained
by multiplying the
embedding with the
respective weight
matrix.

How do we get these
weight matrices?

These matrices are the
trainable parameters
of the network

25



Scaled Dot Product Attention
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Multi-Headed Attention

Similar to convolutional layers with multiple filters,
we can have “multi-headed attention”

MultiHead(Q, K,V) = Concat(heady, ..., heady)W?
Where: head; = Attention(QW.}, KW, VW,")

Projected Attention:
Project (Q, K, V) with
learned parameters
wa,wk wv

Separate learned fully-
connected layer for each head i
and for each of (Q, K, V)

|
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Linear J Linear J Linear ,]
V K Q



Masked Multi-Headed Attention

In the decoder self attention, there is
a “Mask’...

Remember, the target sequence is
somethln%we are producing
sequentially.

Words early in the output should not
be able to attend to words later in the
output.

The mask restricts attention only to
previous words/targets.
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Masked Multi-Headed Attention

Alternatively, for practical
reasons we may feed in
“padding” with our inputs (i.e.,
to run batches we need inputs
to be the same size)

We don’t want our real words to
attend to our padding (empty)
words
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Cross Attention

e Self-Attention is how much each input “attends” to every other
Input

* Cross-Attention is how much every output “attends” to every input
(i.e., our original motivation for attention)

1
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Position Encoding

* Part of the original motivation behind using RNNs for sequence
data was to incorporate the structure of the problem (i.e., that
order matters in the sequence)

* Attention (so far) does not care about the order that inputs arrive,
all the operations are symmetric

* How can we get our networks to realize that there is an ordering to
our inputs without using RNNs?

What’s the difference between:

1. The cow jumped over the moon
2. Overthe jumped cow moon the
Word order matters!




Want: a unique encoding
(vector) for every value of
position

Positional Encoding

Option 1:
Make this a learnable parameter.

Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,... max_length)

Option 2:
Do what “Attention is All you Need” did

21

PE (pos, 2i) = sin(pos/100004)
21
PE(pos, 2i + 1) = cos(pos/100004)




Positional Encoding

Option 1:
Make this a learnable parameter.
Learn an embedding for every position a word can be in (i.e.,

1, 2, 3,... max_length) 1. Fix a size for the output of your
. Position embedding d (has to match
OptIO n2: size of embeddings/projections)

Do what “Attention is All you Need” did
21
PE (pos, 2i) = sin(pos/100004)
21
PE(pos, 2i + 1) = cos(pos/100004)



Positional Encoding

Option 1:
Make this a learnable parameter.
Learn an embedding for every position a word can be in (i.e.,

1, 2, 3,... max_length) 1. Fix a size for the output of your
) . Position embedding d (has to match
OptIO n2: size of embeddings/projections)

Do what “Attention is All you Need” did |3, ateach index of the encoding,

evaluate the properformula (i.e., even

2i
PE (pOS, 2 l) = sSin (pOS/l OOOOE) positions use sin, odd positions use

cos)

21
PE(pos, 2i + 1) = cos(pos/100004)



Positional Encoding

“We chose this function because we hypothesized it would allow the
model to easily learn to attend by relative positions, since for any fixed
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

PE(pos + k) = A - PE(pos)

Any Linear function
can berepresented as
a matrix multiplication



Positional Encoding

For every pair of adjacent values in the position encoding

A sin(c - pos) B sin(c - (pos + k))
| (cos(c : pos)) B (cos(c - (pos + k)))

__ [ cos(c'k), sin(c-k)
A= (—sin(c-k), Cos(c-k))



Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs

Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)

2. When batches are small, mean and standard deviation can vary
highly

LayerNorm: Instead of normalizing based on the batch dimension,
normalize the outputs of a layer based on the mean and standard
deviation of the outputs of that layer.



Two learnable
parameters, because...

Laye rNorm why not, it’s deep

learning... (optional)

x — E|x] /\

Y= std(x Y Ep

Normalization L.
Outputs before normalization

(i.e., inputs to LayerNorm layer)
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Transformer Strengths

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, & is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) 0(1) O(logx(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

1. Attentionisfasterthan RNNs (n < d)
2. Don’trequire sequential operations, like RNNs

3. Have a lower path length (how many operations does it take for information about words n
distance apartto spread to each other)



Transformer Strengths

params dimension n heads nlayers learningrate batchsize n tokens 2.2 —T
2.11
6.7B 4096 32 32 3.0e4 4M 1.0T a o B g
13.0B 5120 40 40 3.0e74 Y 1.0T - — LLaMA65B
32.5B 6656 52 60 1.5e~4 4M 1.4T 2
65.2B 8192 64 80 1.5¢~* 4M 1.4T £ 189
= 1.7
Table 2: Model sizes, architectures, and optimization hyper-parameters. 1.6-
125 200 400 600 800 1000 1200 1400
Billion of tokens
Figure 1: Training loss over train tokens for the 7B,
Deep Networks do better. More parameters are better. 13B, 33B, and 65 models. LLaMA-33B and LLaMA-
65B were trained on 1.4T tokens. The smaller models
Transformers have many learnable parameters. were trained on 1.0T tokens. All models are trained

with a batch size of 4M tokens.

LLaMA: Open and Efficient Foundation Language Models



Transformer Weaknesses

* Transformers are not good at small scale tasks, they have many
parameters and tend to overfit easily.

* There are really not that many hyperparameters in transformers,
just the number of attention heads, number of layers, and
embedding size.

* Hard to get them to not overfit

Why is this weakness not actually a problem?



Large Language Models: Friday

Larger models require fewer samples
to reach the same performance

The bigger the better

Test Loss 10

8 =
7 42
6 —— L=(D/5.4-10%3)-0095 | 5.6 —— L=(N/8.8+1013)-0076
3.9
4.8
8° 36
: 4.0
S 6
3 3.3 -
=3
3.0
2.4
L={Crnnf2:3-108)~%950
2 . - 2.7 . :
i0-® 10-7 105 10-3 107! 10! 108 10° 10° 107 10° 4 -
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled ; ;
up in tandem. Empirical performance has a power-law relationship with each individual factor when not 107 109 101
bottlenecked by the other two.

Tokens Processed



Out-of-scope use cases

Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don't support use-cases that require the
generated text to be true.

Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they
be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case.
We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of
GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.

GPT-2 Official Open Source Repository: . ‘
https://github.com/ nai/gpt-2/blob/master/m l_card.m «


https://github.com/openai/gpt-2/blob/master/model_card.md

Recap

Transformers consist of a set of
encoders and decoders that use
attention to make predictions for
seguence tasks.

They have a lot of learned parameters
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