CSCI 1470 - ¥ Eﬂ Iﬂ g
. ; 3

Eric Ewing »e .\ ~
{ /» ' \Transformers’
S * home: Cybertron
L5 :

: \C""Q /
Friday . 4
3/14/25™" ..

The Plan

* Finish Supervised Learning portion of class this week

* Today: Transformers
* Friday: LLMs and GPT

e After Break:

* Unsupervised Learning
* Reinforcement Learning

* Weekly Quiz is out

Review

* Seq2Seq modeling task using
encoder-decoder architecture

* Attention measures similarity
between embeddings,
calculates scores, and ends
with a weighted sum of
vectors.

1
| 1 Dense
|

Decoder

Transformer Model Overview

 The Transformer model breaks
down into Encoder and Decoder
blocks.

« At a high level, similar to the
seq2seq architecture we've seen
already...

« ..butthere are no recurrent nets
inside the Encoder and Decoder
blocks!

ff

\S

ENCODERS

DECODERS

/J

40

Transformer Model Overview

The Transformer model breaks
down into Encoder and Decoder
blocks.

At a high level, similar to the
seq2seq architecture we've seen
already...

...but there are no recurrent nets
inside the Encoder and Decoder

blocks!

For better performance, often
stack multiple Encoder and
Decoder blocks (deeper network)

am a student

(f ' \
ENCODER DECODER
\ _ J
4 4
s e ~
ENCODER DECODER
\ _ J
4 4
s 3 ~
ENCODER DECODER
_ _ J
4+ 4
r G ~
ENCODER DECODER
. \ J
4 4
e ~)
ENCODER DECODER
4 : J
4 &
' r =)
ENCODER DECODER
" \ J
k. 7Y ¥

suis eétudiant

41

Transformer Model Overview

* Let's look at what goes on inside

one of these Encoder blocks

'y

[ENCODER J
Y

Encoder Block Map
A

These per-word output I
vectors are analogoustothe EEFD
LSTM hidden states from the

seg2seq2 model

* They should capture “what
information about the input
sentence is relevant to
translating this word?”

Words in input sentence —

|

|

|

Encoder Block Map

= =2
1

 Encoder block breaks down into r. [T
A

two main parts: Self-Attention, and S
P - :

Feed Forward layers.
Feed Forward Feed Forward
Neural Network Neural Network

Z4 [:]:[:Ij Z2D:]:I:J
: 1 1

Self-Attention

e ®) "/

X1 [:':I:D X2DII:|

Thinking Machines

10
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

\S

Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Self-Attention layer is applied to
each word individually. —

)

Feed Forward Feed Forward
Neural Network Neural Network

Self-Attention

- F F
X1 | | | . X2
Thinking Machines

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

11

Predictions

f

[Linear]

[]
The Transformer e

1

1

1

| | Feed-Forward
1 Network
1
1
1
1
]

OUTPUT | am a student —_—

— [Norm]
A A
(7 \ - 3) O @ " SN
ENCODER g DECODER ! I
\. J \ J ' '
4 4 | | Feed-Forward !
[¢ h f 3 ' Network '
ENCODER DECODER 1)
- > & = X !
4 * ! 1
-) 5) 1 1
ENCODER DECODER Nx Nx
L) | S "Layers" "Layers"
r] R 7 4 5
ENCODER DECODER : Ml e e
Multi-Headed A
~ 7y / ~ 7y / Self-Attention Self-Attention
4 ™ G)
ENCODER DECODER
- J Nz J
4 4
g~ ~\ (~\
ENCODER DECODER
- J . J
L i Positional + + Positional
Encoding Encoding
INPUT Je suis étudiant Embeddings/ Embeddings/
|) Projections Projections
T
Source Sequence Shifted

Target Sequence

Components

Self-Attention

* Cross-Attention

* Position Encoding

* Norm

* Feed-Forward Networks

Nx
"Layers"

Positional
Encoding

Feed-Forward
Network

Multi-Headed
Self-Attention
A A A
v K Q

Embeddings/
Projections

Source Sequence

Predictions

f

[Linear |

Feed-Forward
Network

v
1
|
1
1
1
|
1
|
1
\
LAY
L4 -~

N oo

Multi-Headed
Cross-Attention

O

v K Q

Nx

["
, | "Layers
1
1
1
Multi-Headed !
Self-Attention 1
1
1
1
1
1
1
1
1
!
Positional
Encoding

Embeddings/
Projections

Shifted
Target Sequence

Self-Attention:

Input’s attention on itself

The_ The_
animal_ animal_
didn_ didn_
- k.
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_
tire tire

d d

Self-Attention: Overview

The big idea:

Self-attention computes the output vector z;
for each word via a weighted sum of vectors
extracted from each word in the input
sentence

Here, self-attention learns that “it” should
pay attention to “the animal” (i.e. the entity
that “it” refers to)

Why the name self-attention?
This describes attention that the input
sentence pays to itself

street_
because_
it_
was_

too

tire

The_
animal_
didn_

t
Cross_
the_
street_

because

was_
too_
tire

Key Vectors i:

The
animal
didn

t

Cross
the
street_
because_
it_

was_

too

tire
d

Self-Attention: Input’s attention on itself

The_
animal_
didn_

8
Cross_
the_
street_

because
was_

too_
tire

15

Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

The_
animal_
didn_
K
Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

Query Vector

15

Self-Attention: Input’s attention on itself

Key Vectors

What do we do next?

|

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

The

animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

Query Vector

15

Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

The_
animal_
didn_
K
Cross_
the_
street_
because_
it_
was_
too_

tire

The_
animal_
didn_

8

Cross_
the_
street_
because_
it_

was_
too_

tire

Query Vector

15

Self-Attention: Input’s attention on itself

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

0.5

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

15

Self-Attention: Input’s attention on itself

0.5

What do we do next?

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_

it

was_
too_
tire
d

15

Self-Attention: Input’s attention on itself

To determine how much
attention a word should pay to
each other other, we
compute a for the
word and compare itto a

for every other word...

Which use use to compute the
alignment scores a ;

To produce the output vector,
we sum up the

for each word, weighted by the
score we computed in step 1

0.5

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

street_

because_

it_

was_
too

tire

The_
animal_
didn_

K.
Cross_
the_
street_
because_
it_

was_
too_

tire

-

15

Self-Attention: Details

Input Thinking
Embedding X+ (B
Queries g1 LJ_]_}

Extract 3 /

vectors from
K
each word o [

embedding

Values vil []

Machines

X, (S|

HAEEE

[l

24

Self-Attention: Details

Input Machines

Embedding X,/ [| | |

Queries o =
Extract 3
vectors from -
each word Keys E=E =
embedding

Values { =

Each vector is obtained
by multiplying the
embedding with the
respective weight
matrix.

How do we get these
weight matrices?

These matrices are the
trainable parameters
of the network

25

Scaled Dot Product Attention

| Mathdul I

_.l. &
| Softhax |
x - i
[Mask [opt.)]
Generate Q, K, V, by 4
multiplying word [Soake]

embedding X by weight
matrix (i.e., pass through X = |_1_|
a fully connected layer) Mathul

bt
. . W

. QK
Attention(Q, K,V) = softmax| — |V

/.

Multi-Headed Attention

Similar to convolutional layers with multiple filters,
we can have “multi-headed attention”

MultiHead(Q, K,V) = Concat(heady, ..., heady)W?
Where: head; = Attention(QW.}, KW, VW,")

Projected Attention:
Project (Q, K, V) with
learned parameters
wa,wk wv

Separate learned fully-
connected layer for each head i
and for each of (Q, K, V)

|

Linear

1

Concat

AA

r~

Scaled Dot-Product I \Z s

Attention
1l t 1
Linear J Linear J Linear ,]
V K Q

Masked Multi-Headed Attention

In the decoder self attention, there is
a “Mask’...

Remember, the target sequence is
somethln%we are producing
sequentially.

Words early in the output should not
be able to attend to words later in the
output.

The mask restricts attention only to
previous words/targets.

Feed-Forward
Network

Multi-Headed
Self-Attention

A A A
V K Qa

Predictions

f

[Linear |

Feed-Forward
Network

Multi-Headed
1 | Cross-Attention

Nx

Embeddings/
Projections

Source Sequence

Positional
Encoding

["
, | "Layers
Multi-Headed
Self-Attention
Positional
Encoding

Embeddings/
Projections

Shifted
Target Sequence

Masked Multi-Headed Attention

Alternatively, for practical
reasons we may feed in
“padding” with our inputs (i.e.,
to run batches we need inputs
to be the same size)

We don’t want our real words to
attend to our padding (empty)
words

: Multi-Headed
1 | Cross-Attention

N Y

]
Multi-Headed !
Self-Attention X
AATA

Embeddings/
Projections

' vV K Q
S —
1 {_J

Norm

1
1 Multi-Headed
! Self-Attention

Embeddings/
Projections

Cross Attention

e Self-Attention is how much each input “attends” to every other
Input

* Cross-Attention is how much every output “attends” to every input
(i.e., our original motivation for attention)

1
| 1 Dense
1

decoder

Predictions

f

[Linear |

T

Norm

Cross-Attention

Feed-Forward
Network

Uses V, Kfrom encoder, Q from
Decoder

1
1
1
: Multi-Headed
1
1
1
1

1
]
]
1
] 1
! : Cross-Attention :
1
- : A A A '
: Feed-Forward ' '
' Network ' !
1 { .
1 | .
1 1 .
] i ’
! 1 '
Nx \ Nx
"Layers" : "Layers"
[]
1 1 :
: : Masked 1
i [}
1 | Multi-Headed ! Multi-Headed !
' | Self-Attention ' Self-Attention i
! 1
' A A A : :
1 vV K Q ' '
1 1 '
1 1 '
1 1 '
1 1 '
’
Positional Positional
Encoding Encoding

Embeddings/
Projections

Embeddings/
Projections

Source Sequence Shifted
Target Sequence

Predictions

f

[Linear]

T

Norm

Transformer

E Feed-Forward E
1 Network '
[s
Norm J
f :
What’s left? @E " """ > :
oy e . . . ! e
1. Position Encoding Cross-Attention : F ’
2. Norm | P etwore
Nx Nx
"Layers" "Layers”
Masked
Multi-H
Self Attention > SelI]fEAtt::gii:
Positional Positional
Encoding Encoding

Embeddings/
Projections

Embeddings/
Projections

Source Sequence Shifted
Target Sequence

Position Encoding

* Part of the original motivation behind using RNNs for sequence
data was to incorporate the structure of the problem (i.e., that
order matters in the sequence)

* Attention (so far) does not care about the order that inputs arrive,
all the operations are symmetric

* How can we get our networks to realize that there is an ordering to
our inputs without using RNNs?

What’s the difference between:

1. The cow jumped over the moon
2. Overthe jumped cow moon the
Word order matters!

Want: a unique encoding
(vector) for every value of
position

Positional Encoding

Option 1:
Make this a learnable parameter.

Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,... max_length)

Option 2:
Do what “Attention is All you Need” did

21

PE (pos, 2i) = sin(pos/100004)
21
PE(pos, 2i + 1) = cos(pos/100004)

Positional Encoding

Option 1:
Make this a learnable parameter.
Learn an embedding for every position a word can be in (i.e.,

1, 2, 3,... max_length) 1. Fix a size for the output of your
. Position embedding d (has to match
OptIO n2: size of embeddings/projections)

Do what “Attention is All you Need” did
21
PE (pos, 2i) = sin(pos/100004)
21
PE(pos, 2i + 1) = cos(pos/100004)

Positional Encoding

Option 1:
Make this a learnable parameter.
Learn an embedding for every position a word can be in (i.e.,

1, 2, 3,... max_length) 1. Fix a size for the output of your
) . Position embedding d (has to match
OptIO n2: size of embeddings/projections)

Do what “Attention is All you Need” did |3, ateach index of the encoding,

evaluate the properformula (i.e., even

2i
PE (pOS, 2 l) = sSin (pOS/l OOOOE) positions use sin, odd positions use

cos)

21
PE(pos, 2i + 1) = cos(pos/100004)

Positional Encoding

“We chose this function because we hypothesized it would allow the
model to easily learn to attend by relative positions, since for any fixed
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

PE(pos + k) = A - PE(pos)

Any Linear function
can berepresented as
a matrix multiplication

Positional Encoding

For every pair of adjacent values in the position encoding

A sin(c - pos) B sin(c - (pos + k))
| (cos(c : pos)) B (cos(c - (pos + k)))

__ [cos(c'k), sin(c-k)
A= (—sin(c-k), Cos(c-k))

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs

Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)

2. When batches are small, mean and standard deviation can vary
highly

LayerNorm: Instead of normalizing based on the batch dimension,
normalize the outputs of a layer based on the mean and standard
deviation of the outputs of that layer.

Two learnable
parameters, because...

Laye rNorm why not, it’s deep

learning... (optional)

x — E|x] /\

Y= std(x Y Ep

Normalization L.
Outputs before normalization

(i.e., inputs to LayerNorm layer)

Predictions

f

[Linear]

Transformer —

Feed-Forward
Network

-

Feed-Forward
Network

N oo

----------- < Y
Allintermediate outputs have same — E
dimension, only one hyperparameter for | | seit-aention | | !
dimension (many more for number of heads, i
number of encoder/decoders Nx) 5
i ing

Embeddings/ Embeddings/
Projections Projections

Source Sequence Shifted
Target Sequence

Predictions

f

[Linear]

Transformer —

Feed-Forward
Network

Transformers are... complicated — ,
They have many unique components, unlike networks we’ve covered so far Norm \
« CNNs can be large, but they only really have 2 components: CELEE i ------ S :
Convolutions and linear layers
Network .

 Theinternals of an RNN can be complicated, but it’s 3 or 4 operations feed o

Nx . v Nx
Why do they work so well? "Layers” : | "Layers"
E Masked :
1 | Multi-Headed !
: Self-Attention 1
Positional Positional
Encoding Encoding

Embeddings/ Embeddings/
Projections Projections

Source Sequence Shifted
Target Sequence

Transformer Strengths

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, & is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) 0(1) O(logx(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

1. Attentionisfasterthan RNNs (n < d)
2. Don’trequire sequential operations, like RNNs

3. Have a lower path length (how many operations does it take for information about words n
distance apartto spread to each other)

Transformer Strengths

params dimension n heads nlayers learningrate batchsize n tokens 2.2 —T
2.11
6.7B 4096 32 32 3.0e4 4M 1.0T a o B g
13.0B 5120 40 40 3.0e74 Y 1.0T - — LLaMA65B
32.5B 6656 52 60 1.5e~4 4M 1.4T 2
65.2B 8192 64 80 1.5¢~* 4M 1.4T £ 189
= 1.7
Table 2: Model sizes, architectures, and optimization hyper-parameters. 1.6-
125 200 400 600 800 1000 1200 1400
Billion of tokens
Figure 1: Training loss over train tokens for the 7B,
Deep Networks do better. More parameters are better. 13B, 33B, and 65 models. LLaMA-33B and LLaMA-
65B were trained on 1.4T tokens. The smaller models
Transformers have many learnable parameters. were trained on 1.0T tokens. All models are trained

with a batch size of 4M tokens.

LLaMA: Open and Efficient Foundation Language Models

Transformer Weaknesses

* Transformers are not good at small scale tasks, they have many
parameters and tend to overfit easily.

* There are really not that many hyperparameters in transformers,
just the number of attention heads, number of layers, and
embedding size.

* Hard to get them to not overfit

Why is this weakness not actually a problem?

Large Language Models: Friday

Larger models require fewer samples
to reach the same performance

The bigger the better

Test Loss 10

8 =
7 42
6 —— L=(D/5.4-10%3)-0095 | 5.6 —— L=(N/8.8+1013)-0076
3.9
4.8
8° 36
: 4.0
S 6
3 3.3 -
=3
3.0
2.4
L={Crnnf2:3-108)~%950
2 . - 2.7 . :
i0-® 10-7 105 10-3 107! 10! 108 10° 10° 107 10° 4 -
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled ; ;
up in tandem. Empirical performance has a power-law relationship with each individual factor when not 107 109 101
bottlenecked by the other two.

Tokens Processed

Out-of-scope use cases

Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don't support use-cases that require the
generated text to be true.

Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they
be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case.
We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of
GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.

GPT-2 Official Open Source Repository: . ‘
https://github.com/ nai/gpt-2/blob/master/m l_card.m «

https://github.com/openai/gpt-2/blob/master/model_card.md

Recap

Transformers consist of a set of
encoders and decoders that use
attention to make predictions for
seguence tasks.

They have a lot of learned parameters

1
1 Multi-Headed
: Self-Attention

A A A
V K Qa

H—J

' | Feed-Forward

: Multi-Headed
1 | Cross-Attention

1
1 Multi-Headed
! Self-Attention

Embeddings/
Projections

Source Sequence

1
1
1
1
1
1
! "
! .
' '
DN pe—— 3 4
Positional
Encoding

1

1

1

1 1

1 1

1 1

1 1

1 1

\ !

LI s— L4

Positional
Encoding

Predictions

Network

O

Embeddings/
Projections

Shifted
Target Sequence

	Slide 1
	Slide 2: The Plan
	Slide 3: Review
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: The Transformer
	Slide 11: Components
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Scaled Dot Product Attention
	Slide 24: Multi-Headed Attention
	Slide 25: Masked Multi-Headed Attention
	Slide 26: Masked Multi-Headed Attention
	Slide 27: Cross Attention
	Slide 28: Cross-Attention
	Slide 29: Transformer
	Slide 30: Position Encoding
	Slide 31: Positional Encoding
	Slide 32: Positional Encoding
	Slide 33: Positional Encoding
	Slide 34: Positional Encoding
	Slide 35: Positional Encoding
	Slide 36: Normalization
	Slide 37: LayerNorm
	Slide 38: Transformer
	Slide 39: Transformer
	Slide 40: Transformer Strengths
	Slide 41: Transformer Strengths
	Slide 42: Transformer Weaknesses
	Slide 43: Large Language Models: Friday
	Slide 44
	Slide 45: Recap

