CSCI 1470

Eric Ewing

Monday, 3/10/25 Day 21: Attention!

Deep Learning

Logistics

- Guest lecture on Monday by Jason Liu about language grounding
- Final Project groups (and your TA) will be finalized soon

"Attention"

This idea of passing each cell of the decoder a weighted sum of the encoder states is called *attention*.

• Different words in the output "pay attention" to different words in the input

"Attention" - intuition

"Park"

How about we let model learn what is relevant for a particular output

- Need to determine how well output word y_t aligns with each input word x_i
- How can we determine the similarity between two words (or at least the vectors that represent them)?

- Need to determine how well output word y_t aligns with each input word x_i
- How can we determine the similarity between two words (or at least the vectors that represent them)?

Cosine Similarity(h_i, s_{t-1}) = $\frac{h_i s_{t-1}}{||h_i|| \cdot ||s_{t-1}||}$

- Need to determine how well output word y_t aligns with each input word x_i
- How can we determine the similarity between two words (or at least the vectors that represent them)?

Cosine Similarity(
$$h_i, s_{t-1}$$
) = $\frac{h_i s_{t-1}}{||h_i||*||s_{t-1}||}$

Dot product similarity(h_i, s_{t-1}) = $h_i s_{t-1}$

- Need to determine how well output word y_t aligns with each input word x_i
- How can we determine the similarity between two words (or at least the vectors that represent them)?

Cosine Similarity(
$$h_i, s_{t-1}$$
) = $\frac{h_i s_{t-1}}{||h_i||*||s_{t-1}||}$

Dot product similarity(h_i, s_{t-1}) = $h_i s_{t-1}$

Generalized Similarity(h_i, s_{t-1}) = $h_i W_a s_{t-1}$

Learned attention weight matrix How much do we care about each part of embedding?

There are many ways to measure similarity...

Name	Alignment score function	Citation		
Content-base attention	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \operatorname{cosine}[\boldsymbol{s}_t, \boldsymbol{h}_i]$	Graves2014		
Additive(*)	score($\boldsymbol{s}_t, \boldsymbol{h}_i$) = $\mathbf{v}_a^{\top} \tanh(\mathbf{W}_a[\boldsymbol{s}_t; \boldsymbol{h}_i])$	Bahdanau2015		
Location-Base	$\alpha_{t,i} = \text{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015		
General	score $(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{s}_t^\top \mathbf{W}_a \mathbf{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015		
Dot-Product	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^{T} \boldsymbol{h}_i$	Luong2015		
Scaled Dot- Product(^)	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \frac{\boldsymbol{s}_t^{T} \boldsymbol{h}_i}{\sqrt{n}}$	Vaswani2017		
	Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.			

Source: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

What if the sum was a *weighted sum* instead?

 Idea: different words in the input carry different importance

Attention Example

We can represent the attention weights as a matrix:

Columns: words in the input

		hansards	révisé	numéro	1	STOP
	revised	1/2	1/4	1/4	0	0
Dermande in	hansards	1/4	1/2	1/4	0	0
the output	number	0	1/4	1/2	1/4	0
	1	0	0	1/4	1/2	1/4
	STOP	0	0	1/4	1/4	1/2

α_{j,i}: how much 'attention' output word j pays to input word i

What do the values in this particular matrix imply about the attention relationship between input/output words?

Attention Example

"Der Hund <u>bellte</u> mich an." Target: "The dog barked at me." Input: [0, 1/4, 1/2, 1/4, 0]

We see that when we apply the attention to our inputs, we will pay attention to relatively important words for translation when predicting "bellte".

Attention is great!

- Attention significantly improves MT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get (soft) alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself

Attention is a general deep learning technique

More general definition of attention:

Given a set of vector *values*, and a vector *query*, <u>attention</u> is a technique to compute a weighted sum of the values, dependent on the query.

Intuition:

- The weighted sum is a *selective summary* of the information contained in the values, where the query determines which values to focus on.
- Attention is a way to obtain a *fixed-size representation of an* arbitrary set of representations (the values), dependent on some other representation (the query).

Attention in Language Translation

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Image captioning with CNNs, RNNs, and Attention

A \underline{dog} is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

Think-pair-share:

How would you design this architecture with attention?

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Image captioning with CNNs, RNNs, and Attention

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Image captioning with CNNs, RNNs, and Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A large white bird standing in a forest.

A woman holding a <u>clock</u> in her hand.

A man wearing a hat and a hat on a <u>skateboard</u>.

A person is standing on a beach with a <u>surfboard</u>.

A woman is sitting at a table with a large pizza.

A man is talking on his cell phone while another man watches.

Image captioning (HW5)

Same idea as Machine Translation, just replace E_s with an image-level embedding.

Do we still need the RNNs?

After all, we always compute the weighted sum of **all encoder states**.

"Attention Is All You Need"

A 2017 paper that introduced the *Transformer* model for machine translation

- Has no recurrent networks!
- Only uses attention

Motivation:

- RNN training is hard to parallelize since the previous word must be processed before next word
 - Transformers are trivially parallelizable
- Even with LSTMs / GRUs, preserving important linguistic context over very long sequences is difficult
 - Transformers don't even try to remember things (every step looks at a weighted combination of *all* words in the input sentence)

Transformer Model Overview

- The Transformer model breaks down into Encoder and Decoder blocks.
- At a high level, similar to the seq2seq architecture we've seen already...
- ...but there are no recurrent nets inside the Encoder and Decoder blocks!

Transformer Model Overview

- The Transformer model breaks down into Encoder and Decoder blocks.
- At a high level, similar to the seq2seq architecture we've seen already...
- ...but there are no recurrent nets inside the Encoder and Decoder blocks!
- For better performance, often stack multiple Encoder and Decoder blocks (deeper network)

Transformer Model Overview

 Let's look at what goes on inside one of these Encoder blocks

Encoder Block Map

Encoder Block Map

Encoder Block Map

What do we do next?

Self-Attention: Overview

• The big idea:

Self-attention computes the output vector z_i for each word via a weighted sum of vectors extracted from each word in the input sentence

- Here, self-attention learns that "it" should pay attention to "the animal" (i.e. the entity that "it" refers to)
- Why the name *self*-attention? This describes attention that the input sentence pays to itself

To determine how much attention a word should pay to each other other, we compute a query vector for the word and compare it to a key vector for every other word...

To determine how much attention a word should pay to each other other, we compute a query vector for the word and compare it to a key vector for every other word...

Key Vectors

Which use use to compute the alignment scores $a_{t,i}$

To determine how much attention a word should pay to each other other, we compute a query vector for the word and compare it to a key vector for every other word...

Key Vectors

Which use use to compute the alignment scores $a_{t,i}$

To determine how much attention a word should pay to each other other, we compute a query vector for the word and compare it to a key vector for every other word...

Which use use to compute the alignment scores $a_{t,i}$

To determine how much

attention a word should pay to each other other, we compute a query vector for the word and compare it to a key vector for every other word...

Which use use to compute the alignment scores $a_{t,i}$

To determine how much attention a word should pay to each other other, we compute a query vector for the word and compare it to a key vector for every other word...

Which use use to compute the alignment scores $a_{t,i}$

To produce the output vector, we sum up the value vectors for each word, weighted by the score we computed in step 1

To determine how much

attention a word should pay to each other other, we compute a query vector for the word and compare it to a key vector for every other word...

Which use use to compute the alignment scores $a_{t,i}$

To produce the output vector, we sum up the value vectors for each word, weighted by the score we computed in step 1

Self-Attention: Details

Self-Attention: Details

Each vector is obtained by multiplying the embedding with the respective weight matrix.

How do we get these weight matrices?

These matrices are the *trainable parameters* of the network