waen 2| Deep Learning .~
EriC.Ewin.g
BEW, 21:,'Attéhtfén!_

Monday,
--3/10/25 -

Logistics

* Guest lecture on Monday by Jason Liu about language grounding
* Final Project groups (and your TA) will be finalized soon

revised hansards number

What if we passed the sum e Sty mlntie i
of our encoder states to |
every cellin the decoder?

|
What if the sum :
was a weighted |
sum instead? I

hansards

revised

What if each decoder

cell received a different

weighted sum? :

* ldea: different words
in the input carry |
different importance !
foreachwordinthe '
output

Encoder

hansards révisé numeéro 1 STOP

revised hansards number

What if we passed the sum e Sty mlntie i
of our encoder states to |
every cellin the decoder?

|
What if the sum :
was a weighted |
sum instead? I

hansards

How do we achieve this? revised

What if each decoder

cell received a different

weighted sum? :

* ldea: different words
in the input carry |
different importance !
foreachwordinthe '
output

Encoder

hansards révisé numeéro 1 STOP

“Attention”

This idea of passing each cell of the decoder a weighted sum of the
encoder states is called attention.

* Different words in the output “pay attention” to different words in the input

“Attention” - intuition

(4 CP ark) b

How about we
let model learn
what is relevant
for a particular

output

| Dense

decoder

Z

!

hansards révisé numeéro

.—b. Encoder
[,

Attention - implementation

Decoder

hansards révisé numéro 1 STOP

Attention - implementation

Decoder

Encoder

hansards révisé numMero 1

x1 xz X3 X4, X

Attention - implementation

hansards révisé numeéro 1 STOP

X1 X2 X3 X4 X

Attention - implementation

Context Vector for output y;

Ct = § at,,ihi

]
1
=1]
]
]

Encoder

numeéro 1 STOP
X1 X2 X3 X4 Xc

hansards révisé

Attention - implementation

Context Vector for output y;

Ct = § at,,ihi

]
1
=1]
]
]

How well two words are “aligned”

a; = align(xt, ye)

Encoder

hansards révisé nuMéro 1 STOP

X1 X2 X3 X4 X5

Attention - implementation

Context Vector for output y;

Ct = § at,,ihi

l
l
i=1 I
l
l

How well two words are “aligned”

a; = align(xt, ye)

Softmax of some predefined scoringmetric _ _ A A A
exp(score(s;_q, hy)) | .
)ansards révisé

ap; = numéro 1 STOP

ijl exp (score(st_l, hj)) X1 X X3 X4 X5

Attention Alignment Score

* Need to determine how well output word y, alignhs with each input
word X;

* How can we determine the similarity between two words (or at
least the vectors that represent them)?

Attention Alignment Score

* Need to determine how well output word y, alignhs with each input
word X;

* How can we determine the similarity between two words (or at
least the vectors that represent them)?

hiSe—1
1Rl *]1s¢—1]

Cosine Similarity(h;, s¢—1) =

Attention Alignment Score

* Need to determine how well output word y, alignhs with each input
word X;

* How can we determine the similarity between two words (or at
least the vectors that represent them)?

hiSt—1
|1l *Is¢—1]
Dot product similarity(h;, S¢—1) = h;S¢_1

Cosine Similarity(h;, s¢—1) =

Attention Alignment Score

* Need to determine how well output word y, alignhs with each input
word X;

* How can we determine the similarity between two words (or at
least the vectors that represent them)?

hiSt—1
|1l *Is¢—1]
Dot product similarity(h;, S¢—1) = h;S¢_1

Generalized Similarity(h;, sq_1) = hjW,s;_4

Cosine Similarity(h;, s¢—1) =

Learned attention weight matrix
How much do we care about each
part of embedding?

There are many ways to measure similarity...

Name Alignment score function Citation
Content-base score(s;, h;) = cosine[s;, h;] Graves2014
attention
Additive(*) score(s;, h;) = v, tanh(W,[s;; h;]) Bahdanau2015
Location-Base a;; = softmax(W,s;) Luong2015

Note: This simplifies the softmax alignment to only depend on the
target position.

General score(s;, h;) = s/ W, h; Luong2015
where W, is a trainable weight matrix in the attention layer.
Dot-Product score(s;, h;) = s, h; Luong2015
Scaled Dot- Score(st,hl.) — s;\r/,:i Vaswani2017
n
Product(?)

Note: very similar to the dot-product attention except for a scaling
factor; where n is the dimension of the source hidden state.

Source: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

revised hansards number

What if we passed the sum Fr= - —-T- =g -~ = = =
of our encoder states to |
every cellin the decoder? '

was a weighted

sum instead?

 |dea: different "'f‘ "-f- ——+— f—- ___?__
words in the STOP revised hansards umber 1
input carry
different
importance

l
What if the sum :
|
|

Encoder

hansards révisé numMeéro 1 STOP

Attention Example

We can represent the attention weights as a matrix:

Columns: words in the input

hansards révisé numéro 1 STOP
aj’i
revised
hansards

RhOWS: words in What do the values in this

the output number particular matrix imply
about the attention

1 relationship between

input/output words?

STOP

Attention Example

Target: “Der Hund bellte mich an.”

We see that when we apply the
attention to our inputs, we will
pay attention to relatively
important words For translation
when predicting “bellte”.

it «The dog barked atne.”
[0, 1/4, 12, 1/4,0]

Attention is great!

e Attention significantly improves MT performance
* It’s very useful to allow decoder to focus on certain parts of the source

* Attention solves the bottleneck problem
« Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with vanishing gradient problem
* Provides shortcut to faraway states

e Attention provides some interpretability
* By inspecting attention distribution, we can see what the decoder was focusing on
* We get (soft) alignment for free!
* This is cool because we never explicitly trained an alignment system
* The network just learned alignment by itself

Attention is a general deep learning technique

More general definition of attention:

Given a set of vector values, and a vector guery, attention is a
technique to compute a weighted sum of the values, dependent on

the query.

Intuition:

* The weighted sum is a selective summary of the information
contained in the values, where the query determines which
values to focus on.

* Attention is a way to obtain a fixed-size representation of an
arbitrary set of representations (the values), dependent on
some other representation (the query).

Attention in Language Translation

agreement
on
European
Economic
signed

in

August
1992
<end>

Area
was

()
e
-

the

accord

sur

la

zone
économique
européenne
a

été

signé

en

ao(t

1992

<end>

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

S
T
.-,\L

A dog is standing on a hardwood floor.

A stop sign is on a road with a
mountain in the background.

A group of people sitting on a boat A giraffe standing in a forest with
in the water. trees in the background.

Image captioning with CNNs, RNNs, and Attention

Think-pair-share:

How would you design
this architecture with
attention?

Image captioning with CNNs, RNNs, and Attention

A |
bird |

flying
over

14x14 Feature Map

a
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word

generation
\. J

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Image captioning with CNNs, RNNs, and Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.
e ,

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone

with a surfboard. with a large pizza. while another man watches.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Image captioning (HW5)

CNN

;. n

b

Classifier |

13

llThe” lldogll
' Classifier | Classifier |
T, th.
> S
T h1 T hz
“START” “The”

—>

!

Ildogll

hs

“hiding”

1

\ =
- Classifier

—

—>

!

wi; . n

IS

hg

“sTOP”

!

| Classifier

.
!

“hiding”

Same idea as Machine Translation, just replace
E_s with an image-level embedding.

Lazebnik

Do we still need the RNNSs?

After all, we always compute the weighted sum of all
encoder states.

“Attention Is All You Need”

A 2017 paper that introduced the Transformer model for machine translation
* Has no recurrent networks!

* Only uses attention

Motivation: o

* RNN training is hard to parallelize since the previous word must be processed before next word
* Transformers are trivially parallelizable
* Even with LSTMs / GRUs, preserving important linguistic context over very long sequences is
difficult

* Transformers don’t even try to remember things (every step looks at a weighted combination of all
words in the input sentence)

Transformer Model Overview

 The Transformer model breaks
down into Encoder and Decoder
blocks.

« At a high level, similar to the
seq2seq architecture we've seen
already...

« ..butthere are no recurrent nets
inside the Encoder and Decoder
blocks!

ff

\S

ENCODERS

DECODERS

/J

40

Transformer Model Overview

The Transformer model breaks
down into Encoder and Decoder
blocks.

At a high level, similar to the
seg2seq architecture we've seen
already...

...but there are no recurrent nets
inside the Encoder and Decoder

blocks!

For better performance, often
stack multiple Encoder and
Decoder blocks (deeper network)

am a student

t \
N
ENCODER DECODER
v
))
~
ENCODER DECODER
v
4 4
~
ENCODER DECODER
7
2 3
N
ENCODER DECODER
S
L))
N
ENCODER DECODER
J
L 4
N
ENCODER DECODER
v
A J

je

suis etudiant

41

Transformer Model Overview

* Let's look at what goes on inside

one of these Encoder blocks

'y

[ENCODER J
Y

Encoder Block Map
A

These per-word output I
vectors are analogoustothe EEFD
LSTM hidden states from the

seg2seq2 model

* They should capture “what
information about the input
sentence is relevant to
translating this word?”

Words in input sentence —

|

|

|

Encoder Block Map

= =2
1

 Encoder block breaks down into r. [T
A

two main parts: Self-Attention, and S
P - :

Feed Forward layers.
Feed Forward Feed Forward
Neural Network Neural Network

Z4 [:]:[:Ij Z2D:]:I:J
: 1 1

Self-Attention

e ®) "/

X1 [:':I:D X2DII:|

Thinking Machines

10
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

\S

Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Self-Attention layer is applied to
each word individually. —

)

Feed Forward Feed Forward
Neural Network Neural Network

Self-Attention

- F F
X1 | | | . X2
Thinking Machines

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

11

Self-Attention:

Input’s attention on itself

The_ The_
animal_ animal_
didn_ didn_
- k.
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_
tire tire

d d

Self-Attention: Input’s attention on itself

What do we do next?

The
animal
didn

t

Cross
the
street_
because_
it_

was_

too

tire
d

The_
animal_
didn_

8
Cross_
the_
street_

because

was_
too_
tire

15

Self-Attention: Overview

The big idea:

Self-attention computes the output vector z;
for each word via a weighted sum of vectors
extracted from each word in the input
sentence

Here, self-attention learns that “it” should
pay attention to “the animal” (i.e. the entity
that “it” refers to)

Why the name self-attention?
This describes attention that the input
sentence pays to itself

street_
because_
it_
was_

too

tire

The_
animal_
didn_

t
Cross_
the_
street_

because

was_
too_
tire

Key Vectors i:

The
animal
didn

t

Cross
the
street_
because_
it_

was_

too

tire
d

Self-Attention: Input’s attention on itself

The_
animal_
didn_

8
Cross_
the_
street_

because
was_

too_
tire

15

Key Vectors

What do we do next?

|

The
animal
didn

t

Cross
the
street_
because_
it_

was_

too

tire
d

Self-Attention: Input’s attention on itself

The_
animal_
didn_

8
Cross_
the_
street_

because
was_

too_
tire

15

Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

The_
animal_
didn_
K
Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

Query Vector

15

Self-Attention: Input’s attention on itself

Key Vectors

What do we do next?

|

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

The

animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

Query Vector

15

Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

The_
animal_
didn_
K
Cross_
the_
street_
because_
it_
was_
too_

tire

The_
animal_
didn_

8

Cross_
the_
street_
because_
it_

was_
too_

tire

Query Vector

15

Self-Attention: Input’s attention on itself

Key Vectors

|

What do we do next?

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

The_

animal_
didn_

street_
because_
it_

was_
too_

tire

The_
animal_
didn_

8

Cross_
the_
street_
because_
it_

was_
too_

tire

Query Vector

15

Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

The_
animal_
didn_
K
Cross_
the_
street_
because_
it_
was_
too_

tire

The_
animal_
didn_

8

Cross_
the_
street_
because_
it_

was_
too_

tire

Query Vector

15

Self-Attention: Input’s attention on itself

Key Vectors

|

What do we do next?

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

The_

animal_
didn_

street_
because_
it_

was_
too_

tire

The_
animal_
didn_

8

Cross_
the_
street_
because_
it_

was_
too_

tire

Query Vector

15

Self-Attention: Input’s attention on itself

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

0.5

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_

it

was_
too_
tire
d

15

Self-Attention: Input’s attention on itself

0.5

| 2
To deter What qﬁo we do next”

attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_

it

was_
too_
tire
d

15

Self-Attention: Input’s attention on itself

To determine how much
attention a word should pay to
each other other, we
compute a for the
word and compare itto a

for every other word...

Which use use to compute the
alignment scores a ;

To produce the output vector,
we sum up the

for each word, weighted by the
score we computed in step 1

0.5

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

street_

because_

it_

was_
too

tire

The_
animal_
didn_

K.
Cross_
the_
street_
because_
it_

was_
too_

tire

-

15

Self-Attention: Input’s attention on itself

0.5

?
To deter I | Whatqﬁg we do next”

attention a word should pay to
each other other, we
compute a for the
word and compare itto a

for every other word...

Which use use to compute the
alignment scores a ;

To produce the output vector,
we sum up the

for each word, weighted by the
score we computed in step 1

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

street_

because_

it_

was_
too

tire

The_
animal_
didn_

K.
Cross_
the_
street_
because_
it_

was_
too_

tire

-

15

Self-Attention: Details

Input Thinking
Embedding X+ (B
Queries g1 LJ_]_}

Extract 3 /

vectors from
K
each word o [

embedding

Values vil []

Machines

X, (S|

HAEEE

[l

24

Self-Attention: Details

Input Machines

Embedding X,/ [| | |

Queries o =
Extract 3
vectors from -
each word Keys E=E =
embedding

Values { =

Each vector is obtained
by multiplying the
embedding with the
respective weight
matrix.

How do we get these
weight matrices?

These matrices are the
trainable parameters
of the network

25

	Slide 1
	Slide 2: Logistics
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Attention Alignment Score
	Slide 15: Attention Alignment Score
	Slide 16: Attention Alignment Score
	Slide 17: Attention Alignment Score
	Slide 18: There are many ways to measure similarity…
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

