. * - . .
S 3 -
4 5 . e
o . 4 X
1%
. ‘ : : ‘
. -
% ¢ . 9 - s 0 : A\
' . &
. .. y 3 y . ' ‘.
. - :
. > X A .1
. 3oL i TP .
- .
0o ! & . .
% o . " .
; o ;i ki 2 "
. N "y 4
iy :
- ‘. 7 « -
. o SRS - 5
. § A
%
. %
.
s
3 P
. 2 .
¢ * .. . v " % .
. . x « & o i
. % * . . g .
: 4 £ ¢
. w *
. . a2)
@ - . .

Logistics

* Keep thinking about final project groups and projects, use Edstem
If you’re looking for partners!
* Max group size of 4
* ~60 people have not yet cloned the CNNs stencil
* You should probably get started...

* Don’t forget about workshops/SRC discussions
* You have to attend 2 of each before the end of the semester

RNN Cell Architecture

“wasﬂ

RNN at time t

RNNSs are bad at “long term memory”

Information attime t, s¢, is repeatedly fed
through a fully connected layer and needs to
remain relatively unchanged untilitis
needed.

Output o,

FC_

Current State S,

A

FC,

Embedding of word x

Previous State s_,

”

“dog

30

Vanilla RNN LSTM

LSTM

Cell State (long short-term memory)

™

/

Hidden State (short —term memory)

Xt

word embedding

How an LSTM works

« An LSTM consists of 3 major modules:
 Forget module
« Remember module
« Output module

The Complete LSTM

A
Remember module

@ ta
A
wbollwbo| wbh flwbo j
1

Forget Module

V4
&

Say we just predicted “tail” in “My dog has a fluffy

Next set of words: “/ love my dog”

Forget Module

« Model no longer needs to know about “dog”
« Ready to delete information about subject

whad = fully connected layer with

® iigm_oid _
Forget Module tiplicatior

Simon loves to sing”

Forget Module

* Filters out what gets allowed into the LSTM cell from the last state

« Example: If it’s remembering gender pronouns, and a new subject is seen, it
will forget the old gender pronouns

 Either lets parts of C_, pass through or not

32

I love my dog

Forgetting information

« Use pointwise multiplication by a mask vector to forget information
« What do we want to forget from last cell state?

t-1

o” ” 0.3
dog m 0.2

33

I love my dog

Forgetting information

« Use pointwise multiplication by a mask vector to forget information
« What do we want to forget from last cell state?
« Output of fully connected + sigmoid is what we want to forget

C., a(W[x, h,_,]+ b)

o ” 0.3 0.0
dog W 0.2 ® ‘ 0.0

34

I love my dog

Forgetting information

« Use pointwise multiplication by a mask vector to forget information
« What do we want to forget from last cell state?
« Output of fully connected + sigmoid is what we want to forget
« “Zeros out” a part of the cell state
 Pointwise multiplication by a learned mask vector is known as gating

C., o(W(x; hy_,]+ b) Unforgotten C_,

ee
oo

o ” 0.3 0.0 _
dog m 0.2 ® | 0.0 —

35

whad = fully connected layer with

® iigm_oid _
Forget Module tiplicatior

= fully connected layer with

= pointwise

What’s next? ® sigmoid

multiplication

A

m = fully connected layer with sigmoid

w b h = fully connected layer with tanh

Re m e m be I M Od u I e ® = pointwise multiplication

» We can save information that we want to ®= ©ointwise addition
remember by adding it into “empty” slots
in the cell state

38

= fully connected layer with sigmoid
w b h = fully connected layer with tanh

Re m e m be r M Od u I e ® = pointwise multiplication
. . . @ = pointwise addition
« First: use gating to decide what to
remember

R

39

I love my dog

Gating for ‘selective memory’

« A fully-connected + tanh on [input, memory] computes some new
memory

tanh(Wy[x; he_q] + by)

40

Gating for ‘selective memory’

I love my dog

« A fully-connected + tanh on [input, memory] computes some new

memory

« We gate this memory to decide what bits of it we want to remember
long-term in the cell state

tanh(Wy[x; hi—1] + by)

X

o(Wa[x: he—q] + by)

1.0
1.0

I love my dog

Gating for ‘selective memory’

* A fully-connected + tanh on [input, memory] computes some new
memory

« We gate this memory to decide what bits of it we want to remember
long-term in the cell state

tanh(Wy[x; he_q1] + by) o(Wa[x; hi—q1]+ b3) Selected Memory

ee
w o

“uyn 0.9 1.0 —
’ 0.3 1.0 -

42

m = fully connected layer with sigmoid
w b h = fully connected layer with tanh

Re mem be I M Od U I e ® = pointwise multiplication

. . . = pointwise addition
« Then: we add this selective memory into @

the cell state

I love my dog

Remembering information

- Add what we didn’t forget to what we did remember

Unforgotten C__ Selected Memory C

oo

0.0
[oo + |

W O
Il

(==
W o

45

Why does this solve our problem?

« Cell state never goes through a fully connected layer!

« Never has to mix up its own information E
E
A
K
lWhbo w b h /
t—1 (I » h,

46

@ = fully connected layer with sigmoic

O Ut p ut M Od u I e w b h = fully connected layer with tanh

® = pointwise multiplication
@ = pointwise addition

47

= fully connected layer with sigmoic

O Ut p Ut M Od u I e w b h = fully connected layer with tanh

® = pointwise multiplication

« Same structure as the remember module @ = pointwise addition
* Provides path for short-term memory h, to temporarily A

acquire info from the longer-term cell state.

48

Any questions?

The Complete LSTM

j, = (7(”.,/), | + I'?,.I" + I),)
fi=0(Wihi_y + Usxy + by) . ®_@ |
o = o(Wohi—1 + Uyxy + b,) tanh

)

¢ = tanh(Whi_y + Uzy + b

Ct = ftO0Ci—1 + 3, 0 C

h!:(HO’””h“V) Iwbalwba wbh lwhbo ¥/
yg = h t—1 (

The Complete LSTM

e |[f we never output cell state then why do we have it?

e |s it possible to just have one state, the hidden state?

A

X—D

A

Iwba'l wbo| wbh lwhbo

7

tanh

/

GRU

e Gated Recurrent Unit
* In practice, similar performance and may train faster

 Removes cell state, computationally more efficient and less complex

- In theory, weaker than LSTMs since it cannot unboundedly countl

Ly

- Counting: track increment or decrement of variable
hi—1

- e.g. Validate brackets in code

[...(...{..}...)]

Requires counting brackets & nesting levels

GRU vs LSTM

Forget module

-

Iwb al bo |

GRU vs LSTM

Remember module
v =

tanh

GRU vs LSTM

"No direct analogue in LSTM

/ “Select the part of the memory that is

relevant for the current prediction step”

tanh

Overview of RNN Seqguence Prediction

The dog barked at

The —

Embedding Matrix

Initial Hidden State

|

dog —

Embedding Matrix

" Embedding for “The”

RNN

Predicted word

Output

\ 4

Embedding for “dog”

RNN

\ 4

(onehot
vector)

Predicted word

Output

* (onehot
vector)

When to compute loss

We have predictions and ground truths at every step, why not
compute the loss after every word and backprop?

Should your model be penalized equally for incorrect predictions?
1) The ___

2) The dog barked at ____

Machine Translation

Software that translates one language to another

English « =" French «

Hello world * Bonjour le monde

0 ¢ O [C

Open in Google Translate Feedback

Why is this an interesting problem to solve?

eComplex: languages evolve rapidly and don’t have a clear
and well-defined structure

* Example of language change: “awful” originally meant “full of
awe”, but is now strictly negative

*Important: billions per year spent on translation services
*>CAS2.4 billion spent per year by Canadian government
*>£100 million spent per year by UK government

Parallel Corpora

*\We need pairs of equivalent sentences in two languages, called
parallel corpora

Canadian Hansards

* Hansards are transcripts of
parliamentary debates

e Canada’s official languages are
English and French, so
everything said in parliament is
transcribed in both languages

Canadian Hansards: Examples

English French

What a past to celebrate. Nous avons un beau passé a célébrer.

We are about to embark on a new era in Le Canada est sur le point d'entrer dans une

health research in this country. nouvelle ere en matiere de recherche sur la
santé.

Canadian Hansards

\We can use this as a dataset for MT!

*Not perfect:

* Translations aren’t literal: in the example, “this country” is
translated to “Le Canada”

* Biased in style: not everyone speaks like politicians in
parliamentary debate

* Biased in content: some topics are never discussed in parliament

Other parallel corpora

* Europarl, a parallel corpus of 21 languages used in the European
Parliament

* EUR-Lex, a parallel corpus of 24 languages used in EU law and public
documents

* Japanese-English Bilingual Corpus of Wikipedia's Kyoto Articles

Any questions?

- 27?72
Problems with parallel corpora -

* Expensive to produce

* Tend to be biased towards particular types of text — e.g. government
documents containing formal language

* Translations aren’t necessarily literal - e.g. “this country” -> “Le
Canada”

* Parallel corpora are necessary, but never perfect

LM approach

e Language modelling works on a word-by-word basis, taking only
previous words as input

P(Wei) = P(Wei | Ws i1, Wsimg, s Ws o)

* Where w,; is the i word in the target sentence, and w, ; is the i*"
word in the source sentence

I Will it work for MT task?

Why our LM approach doesn’t work for MT

« Language modelling works on a word-by-word basis, taking only
previous words as input

P(Wt,i) — P(Wt,i | Ws,i—li Ws,i—Z' ""WS,O)

* Where w,; is the i" word in the target sentence, and w; ; is the it"
word in the source sentence

* However, it is not a given that the information we need comes in the
preceding words

* The order and length of the source and target sentences are not
necessarily equal

Example from Hansards

* For example, take the first entry in Hansard’s:

edited hansard number 1

<

hansard révisé numéro 1

What should we do?

Further examples

French: “Londres me manque”
Naive translation: “London | miss”

4

Correct translation: “I miss London’

French: “Je viens de partir”
Naive translation: “I| come of to go”
Correct translation: “I just left”

Sequence to Sequence (seq2seq)

Thus, we cannot simply use the previous words — we need to
summarize the source sentence first

This is called sequence to sequence to sequence learning, or seq2seq

Sequence to Sequence (seq2seq)

dnstead of:
P(Wi,t) = P(Wi,t ‘ Wi_1,6Wi—2,5 =»Wo 5)
Let’s do:
P(Wi,t) = P(Wi,t ‘ Eg,Wi_1,6Wi_2,t) -, Wo,t)

Where E; is a summary, or embedding, of the sentence taken from the
source language, and w; is the i" word of the sentence in the target
language

What will the neural net look like?

Sentence

embedding (E,)
Source

sentence

Target
sentence

Origin of the encoder/decoder terminology: information theory
* The encoder “compresses” the source sentence into a compact “code”
* The decoder recovers the sentence (but in the target language) from this code

What will the neural net look like?

Any ideas?

Sentence

embedding (E,)
Source — Encoder o
sentence

Encoder

* To generate the sentence embedding, we need an encoder
*Use an LSTM

* Feed in the source sentence
* Take the final LSTM state as the sentence embedding

* This will be a language-agnostic representation of the sentence

* i.e. it will represent the meaning of the sentence without being tied to any
particular language

Encoder architecture

Final LSTM state
as sentence
embedding

hansards révise numero 1 STOP

What will the neural net look like?

Sentence

embedding (E.)
Source o Encoder P I What now?
sentence

What will the neural net look like?

Any ideas?

Sentence
embedding (E,)
Decoder Target
sentence

Decoder

* We now have a sentence embedding representing the meaning of the
source sentence

* Now, let’s generate a sentence in the target language with the same
meaning

* Use an LSTM again, with the sentence embedding as its initial hidden
state

*The rest is just like language modeling:
* Input to the LSTM is the previous word from the target sentence
* Take each LSTM output and put it through a fully connected layer

* Softmax to convert to probability distribution over next word in target
language

Decoder architecture

revised hansards

Sentence
embedding

STOP revised hansards

number

number

STOP

Decoder LSTM

Any gquestions?

revised hansards number 1 STOP

[
, Dense layer
I

- . . . - - . - . . - - . - - . - - s - . - - el

Decoder LSTM

STOP revised hansards number 1

Encoder LSTM Final LSTM state

as sentence
embedding

hansards réviseé numero 1 STOP

	Slide 1
	Slide 2: Logistics
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Overview of RNN Sequence Prediction
	Slide 34: When to compute loss
	Slide 35: Machine Translation
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

