CSCI 1470

Eric Ewing

Friday, 1/24/25

Deep Learning

Day 2: Machine Learning Fundamentals

What do you want to get out of the Class?

- Understanding Applications and Real-World Implementation (36.8% of responses)
- Theoretical Understanding of Deep Learning (why it works) (35.4% of responses)
- Career Development (a job) (28.5% of responses)
- Practical Programming Skills (22.9% of responses)
- Domain-Specific Applications (5.6% of responses)

What do you want to get out of the Class?

- Additional notable patterns:
 - Interest in understanding both the theoretical and practical aspects together
 - Understand modern Al technologies better, especially in light of recent developments
 - Independent projects and gaining the confidence to implement systems without supervision
 - Interest in ethical considerations and societal impacts of deep learning

What do you wish your professors knew about your experiences as a student?

- 1. Course Organization and Support (37.3% of responses)
 - 1. Access to resources/TAs, clear deadlines and expectations, etc.
- 2. Background and Experience Variation (23.0% of responses)
 - 2. For some people, this is their first course in Python
 - 3. For many students, this is their first course in AI
 - 4. Just because you've taken linear algebra doesn't mean you remember anything
- 3. Workload and Time Management (15.1% of responses)
 - 3. Students are stressed, especially around exam weeks
- 4. Learning Preferences and Styles (12.7% of responses)
 - 4. Many students prefer project-based learning
- 5. Career and Future Goals (6.3% of responses)
 - 5. Internship/job interviews can cause conflicts
 - 6. Goal of your education is to get a job after and want to work towards that goal
- 6. Accessibility Needs (4.0% of responses)

What do you want to get out of the Class?

• A seat...

Any pending override approvals not accepted by 5pm today will be revoked and new overrides will be given out.

Aiming for ~225 students

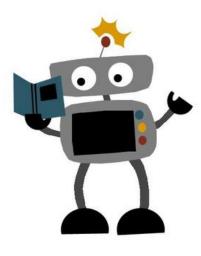
Recap: Machine Learning

Input: X

Output: Y

"Cooking?"

Function: f



Todays Goals

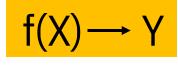
- 1) How do we represent Input/Output? What are X and y?
- 2) How can we learn a function f?
- 3) How do you know if a ML model is "Good"?

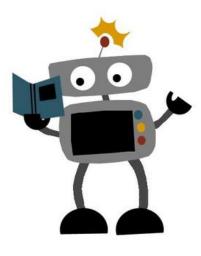
Input: X

Output: Y

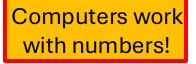
"Cooking?"

Function: f





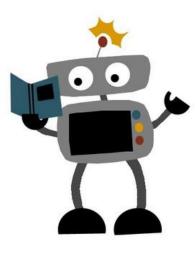
Input: X



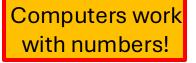
Function: f

Output: Y

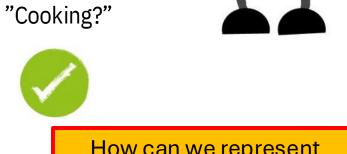
"Cooking?"



Input: X



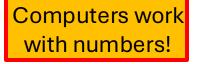
Function: f



How can we represent output labels as numbers?

Output: Y

Input: X

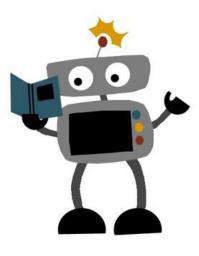


How can we represent Input with numbers?

Function: f

Output: Y

"Cooking?"



How can we represent

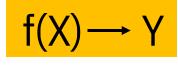
output labels as numbers?

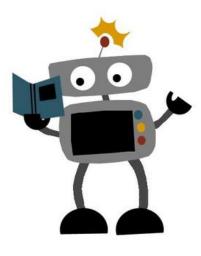
Input: X

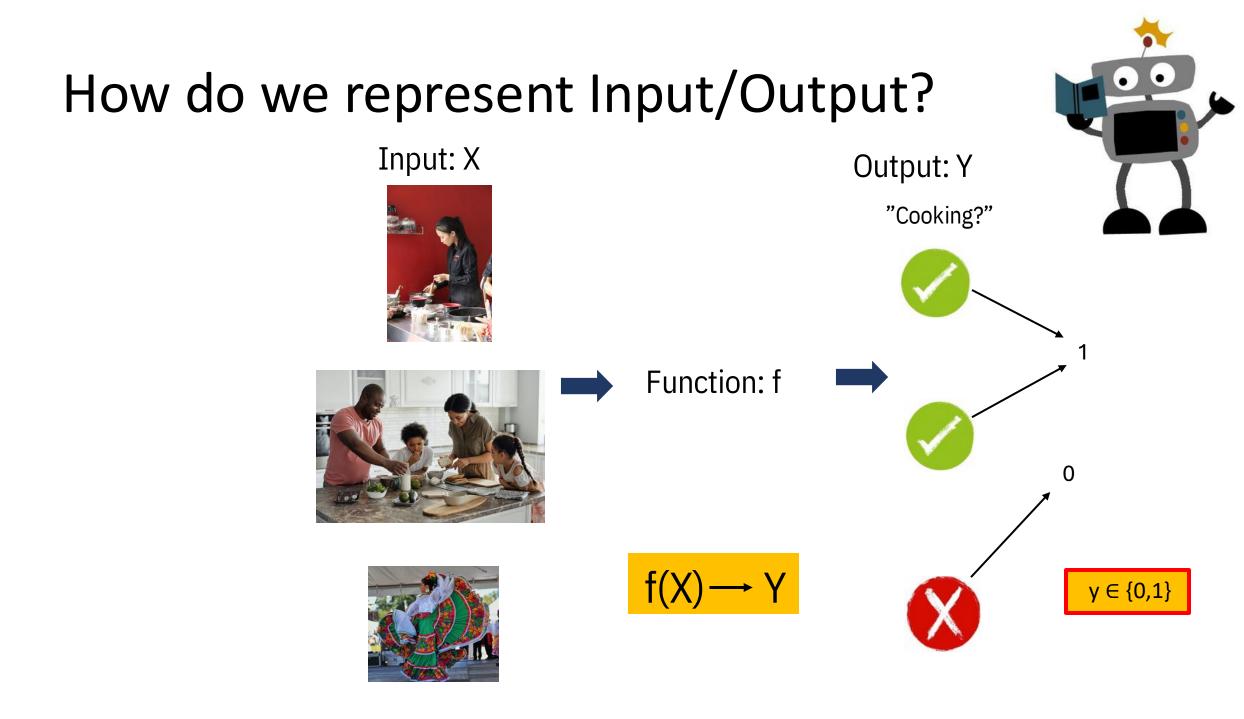
Output: Y

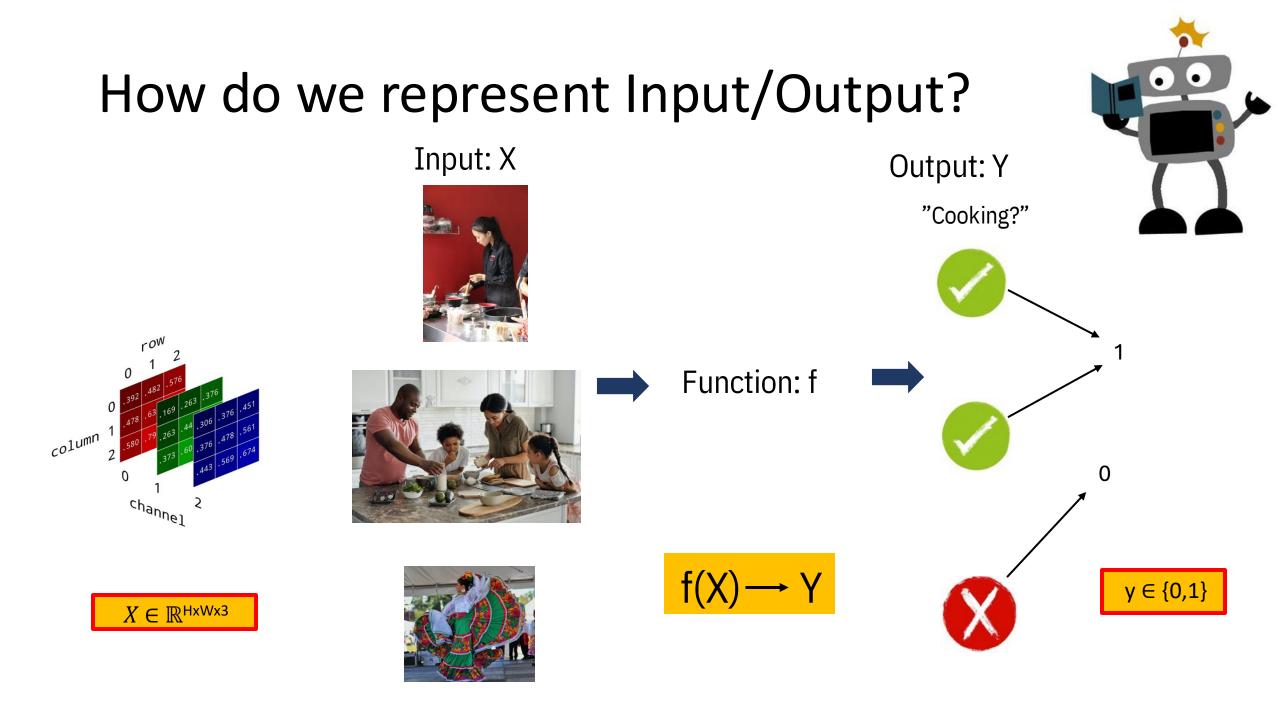
"Cooking?"

Function: f



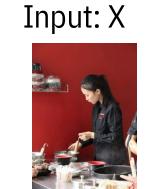






Classification

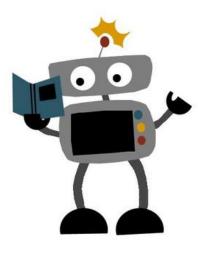
When y is discrete, the task is classification



Function: f

Output: Y

"Cooking?"



Classification

When y is discrete, the task is classification

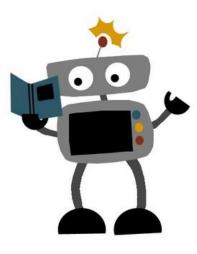
When $y \in \{0, 1\}$ the task is **Binary Classification** Input: X

 $f(X) \rightarrow Y$

Function: f

Output: Y

"Cooking?"



Classification

When y is discrete, the task is classification

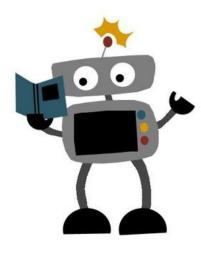
When $y \in \{0, 1\}$ the task is **Binary Classification** Input: X

Function: f

Output: Y

"Cooking?"

What's an example of **multi-class Classification?**



 $\mathbb{R} :$ The set of real numbers

 \mathbb{R} : The set of real numbers $v \in \mathbb{R}^d$: A **vector** in dimension d

 \mathbb{R} : The set of real numbers

 $v \in \mathbb{R}^d$: A **vector** in dimension d

 $V \in \mathbb{R}^{H \times W}$: A **matrix** of dimensions $H \times W$

 $\mathbb{R} :$ The set of real numbers

 $v \in \mathbb{R}^d$: A **vector** in dimension d

 $V \in \mathbb{R}^{H \times W}$: A **matrix** of dimensions $H \times W$

 $V \in \mathbb{R}^{H \times W \times C}$: A **tensor** of dimensions $H \times W \times C$

 \mathbb{R} : The set of real numbers

 $v \in \mathbb{R}^d$: A **vector** in dimension d

 $V \in \mathbb{R}^{H \times W}$: A **matrix** of dimensions $H \times W$

 $V \in \mathbb{R}^{H \times W \times C}$: A **tensor** of dimensions $H \times W \times C$

X: Aset of **input** data

 \mathbb{R} : The set of real numbers

- $v \in \mathbb{R}^d$: A **vector** in dimension d
- $V \in \mathbb{R}^{H \times W}$: A **matrix** of dimensions $H \times W$
- $V \in \mathbb{R}^{H \times W \times C}$: A **tensor** of dimensions $H \times W \times C$
- X: Aset of **input** data
- \mathbb{Y} : A set of target variables (outputs/labels) for supervised learning

 $\mathbb{R} :$ The set of real numbers

- $v \in \mathbb{R}^d$: A **vector** in dimension d
- $V \in \mathbb{R}^{H \times W}$: A **matrix** of dimensions $H \times W$
- $V \in \mathbb{R}^{H \times W \times C}$: A **tensor** of dimensions $H \times W \times C$
- X: Aset of **input** data

 \mathbb{Y} : A set of target variables (outputs/labels) for supervised learning $x^{(k)}$: k'th example (input) from dataset

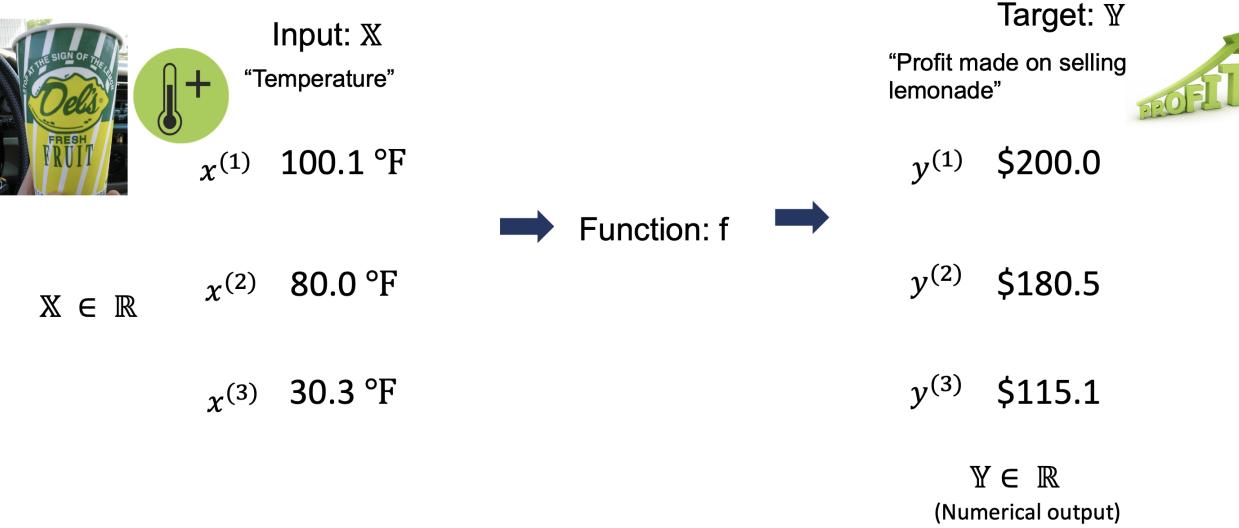
 \mathbb{R} : The set of real numbers

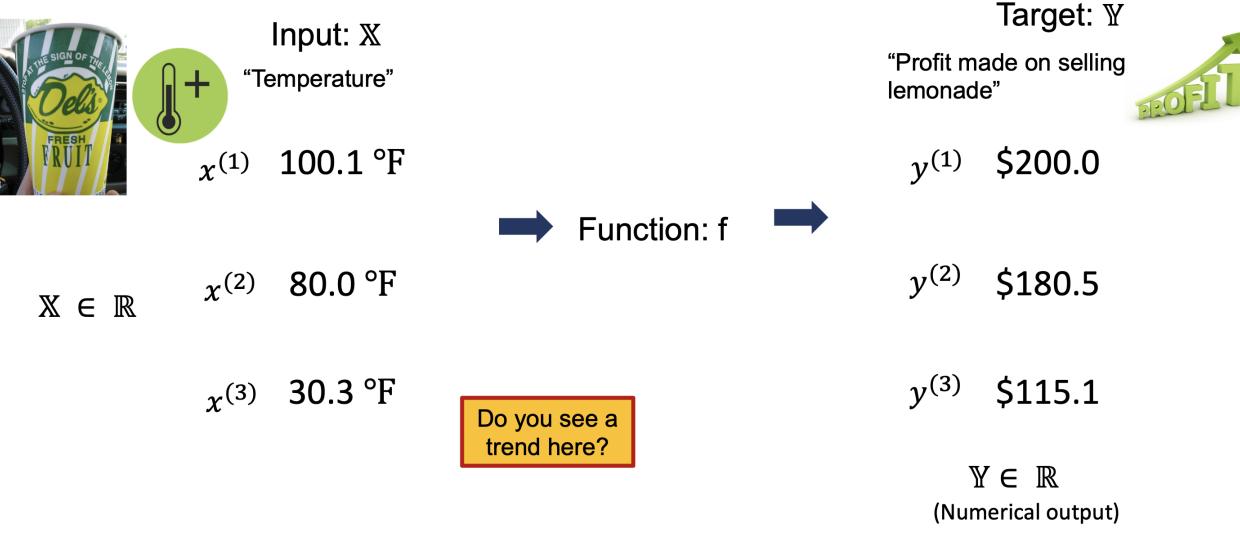
- $v \in \mathbb{R}^d$: A **vector** in dimension d
- $V \in \mathbb{R}^{H \times W}$: A **matrix** of dimensions $H \times W$
- $V \in \mathbb{R}^{H \times W \times C}$: A **tensor** of dimensions $H \times W \times C$
- X: Aset of **input** data

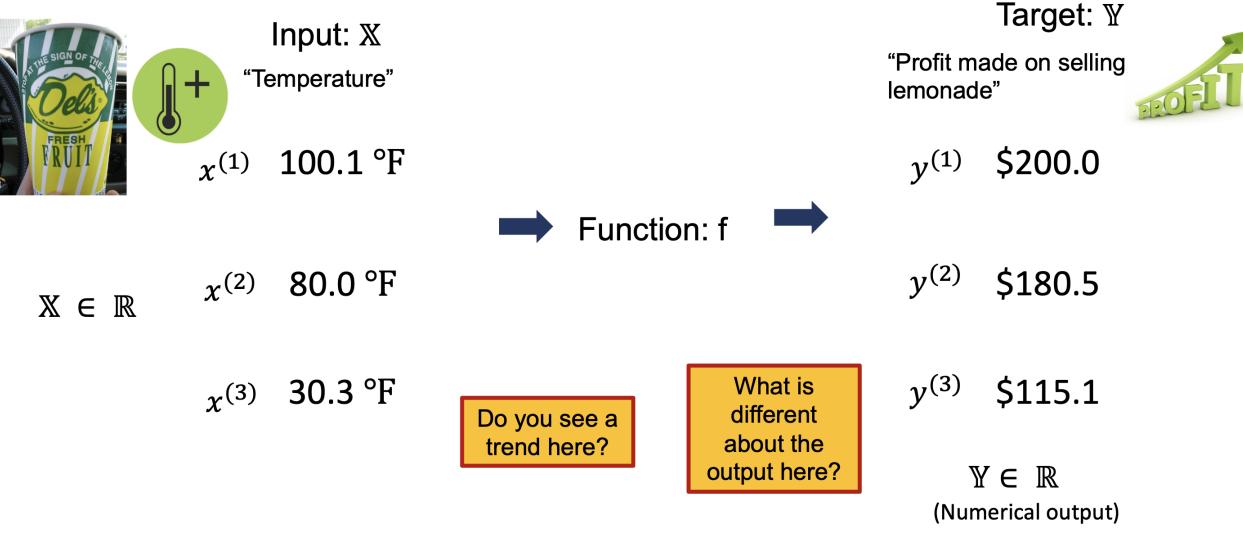
 \mathbb{Y} : A set of target variables (outputs/labels) for supervised learning

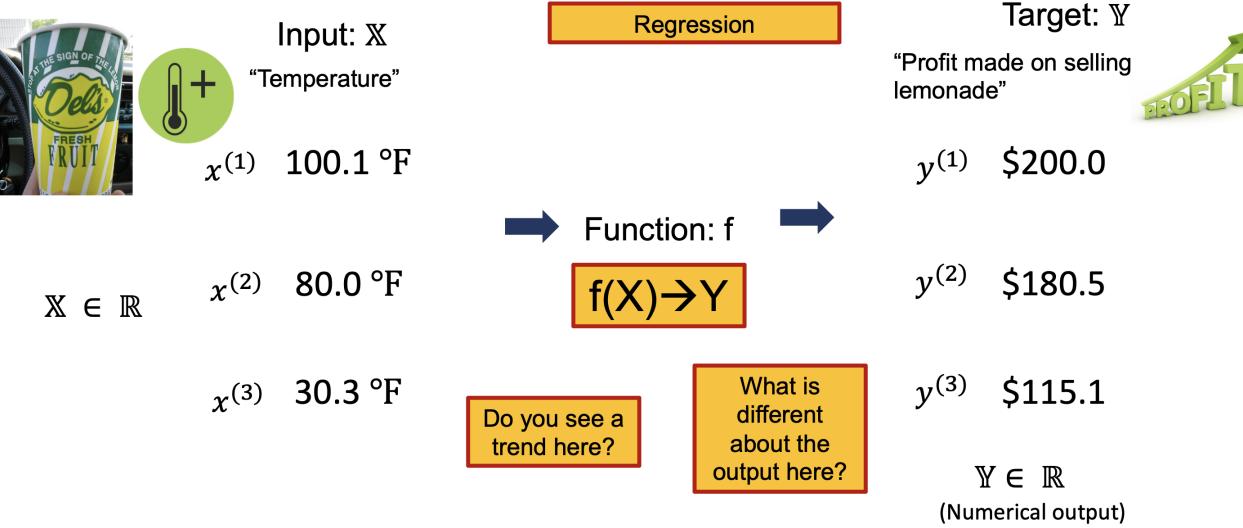
 $x^{(k)}$: k'th example (input) from dataset

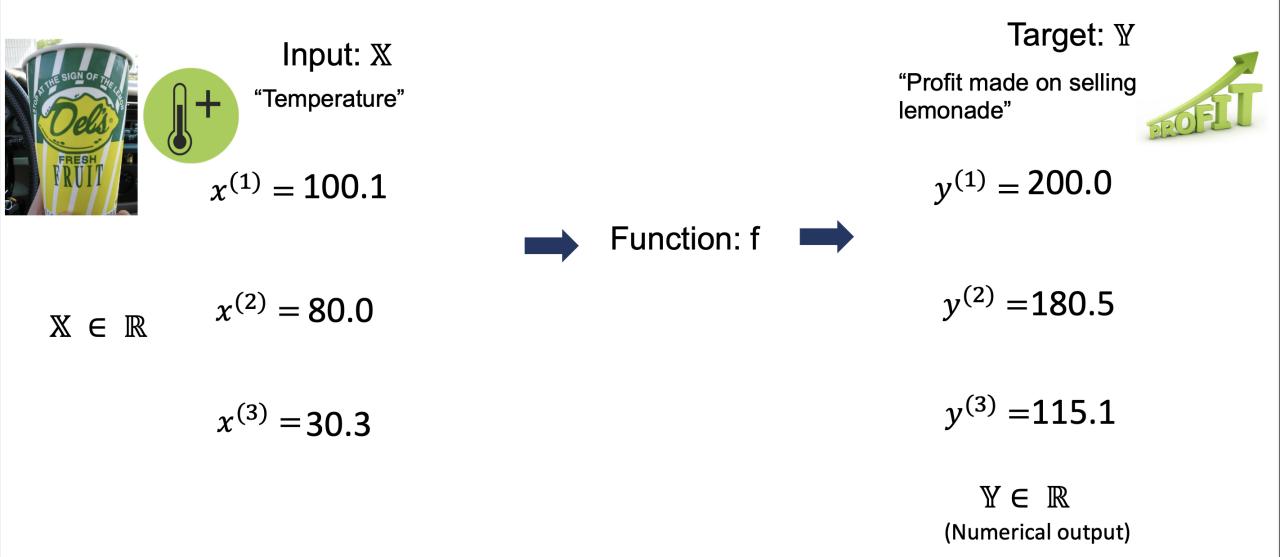
 $y^{(k)}$: k'th example (output) associated with $x^{(k)}$

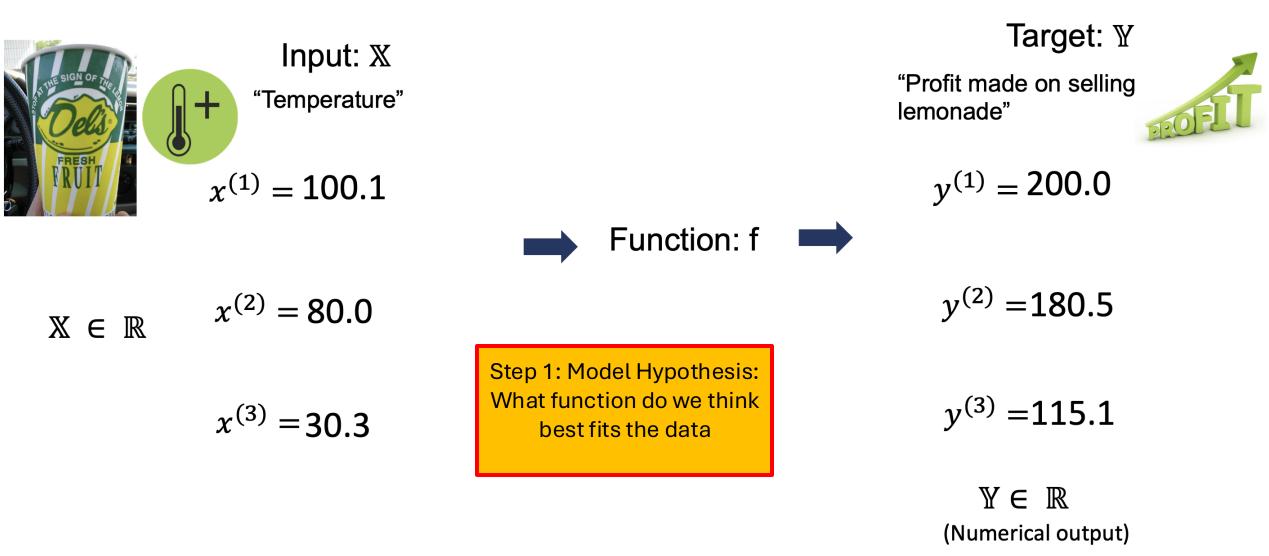


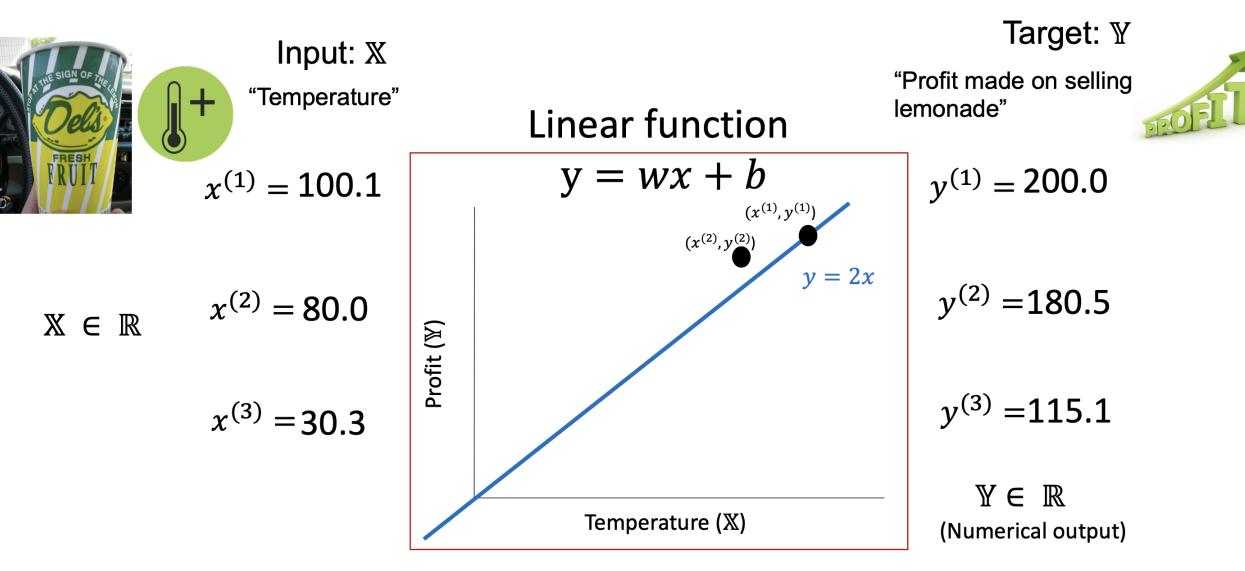




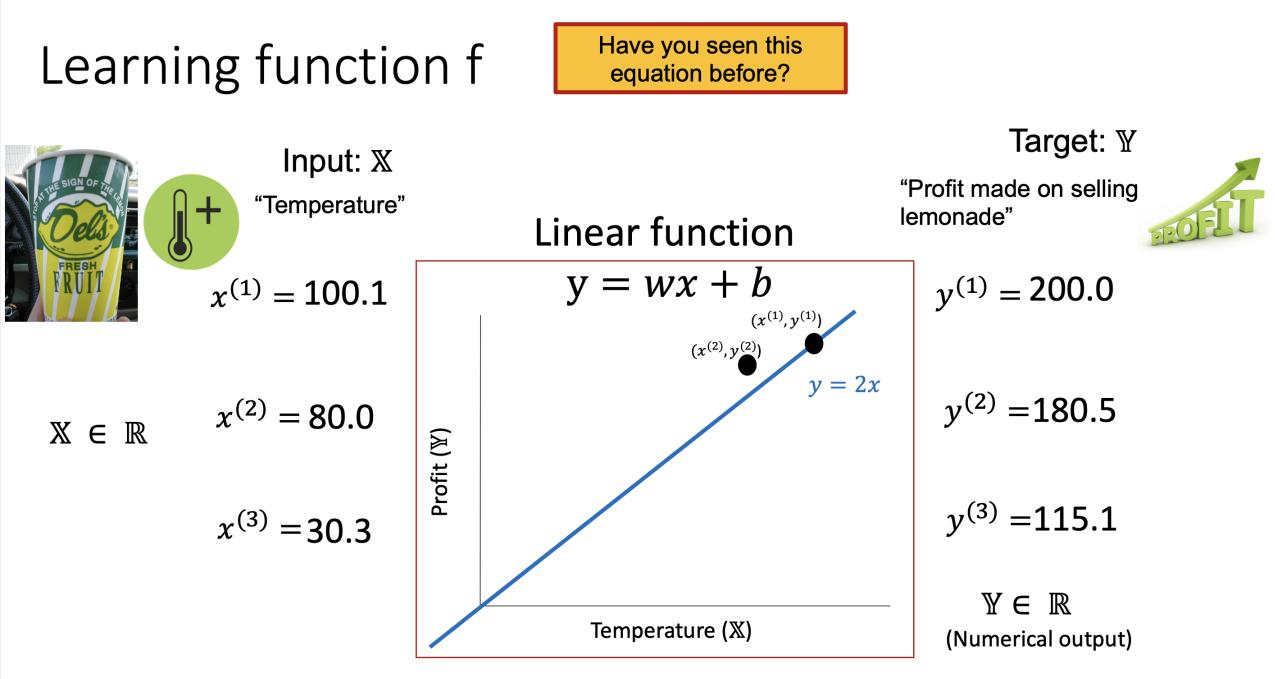


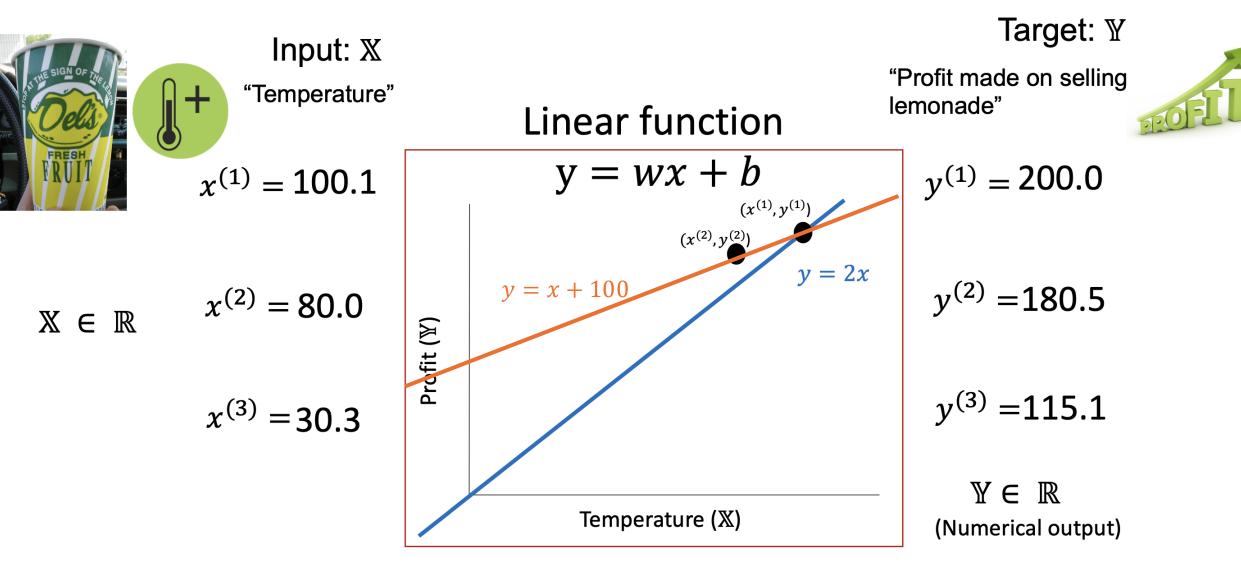


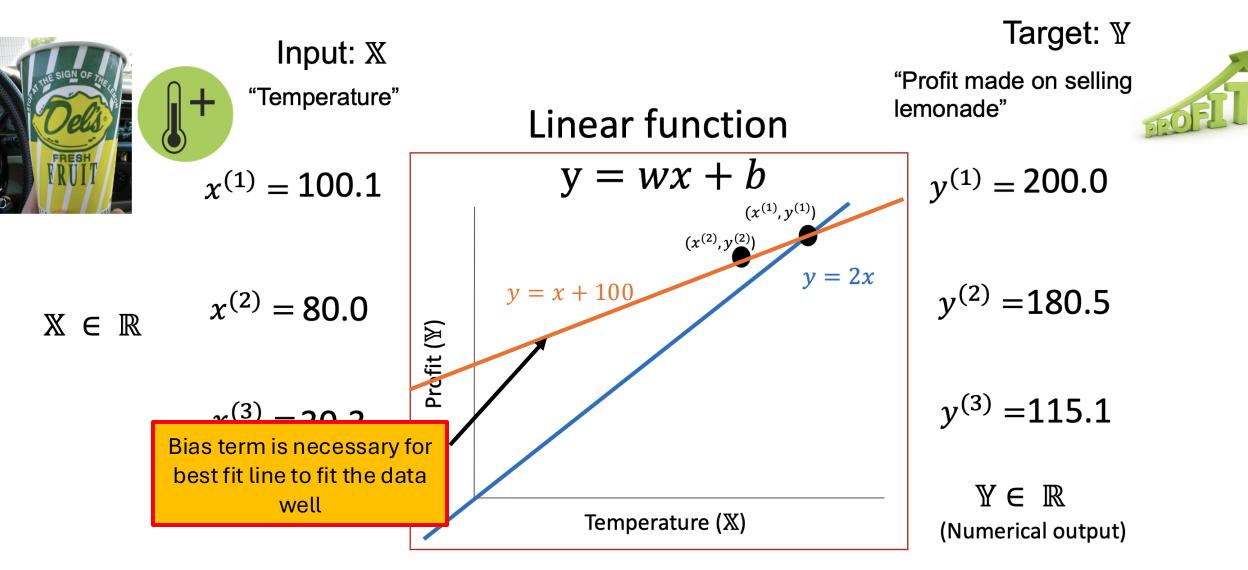




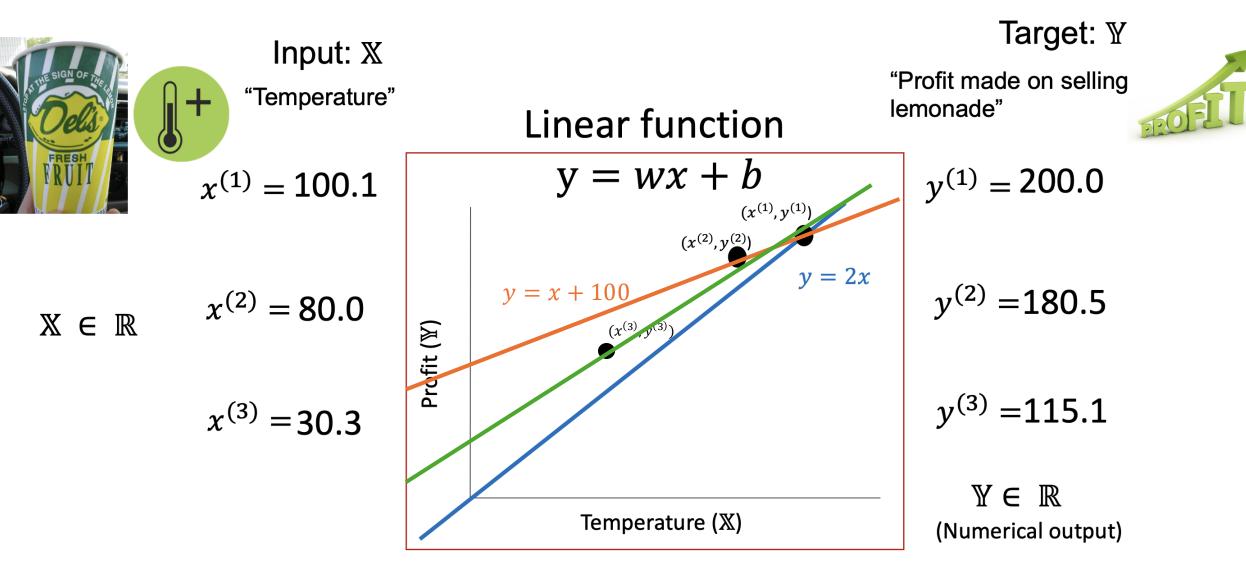
⁽Image only for explaining concept, not drawn accurately)



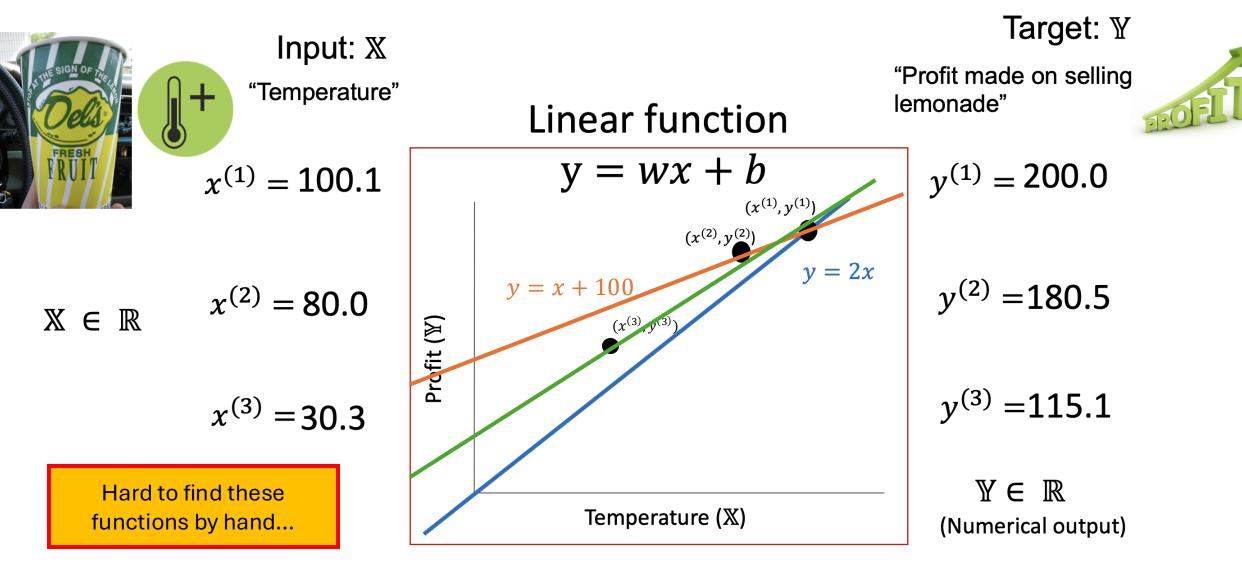




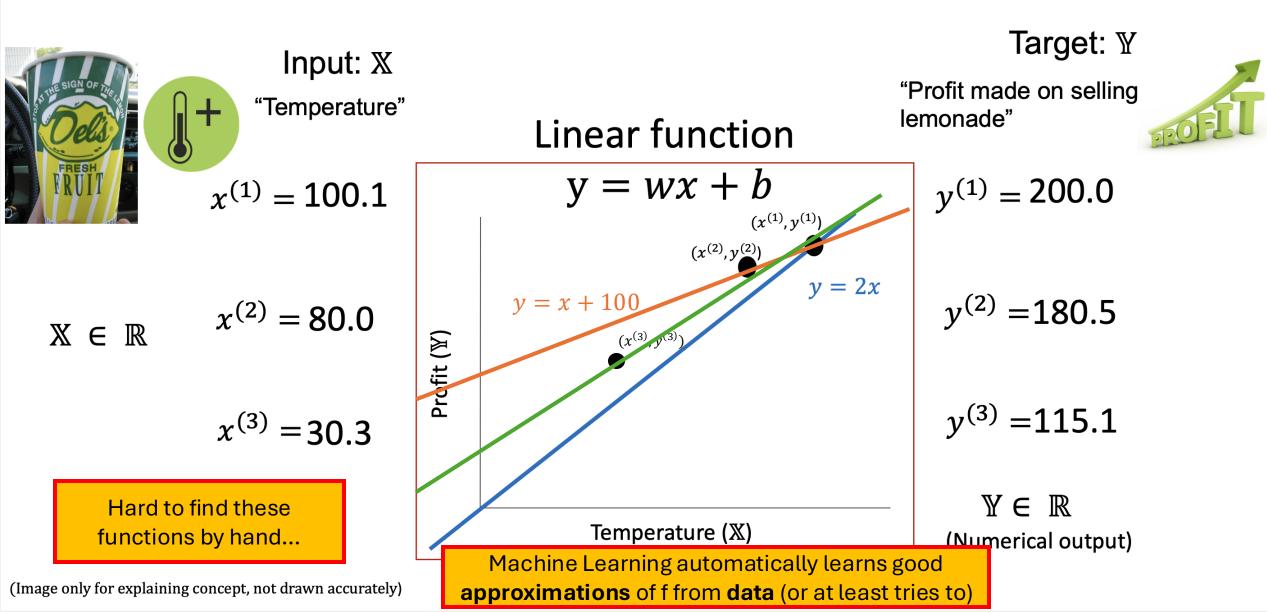
Learning function f



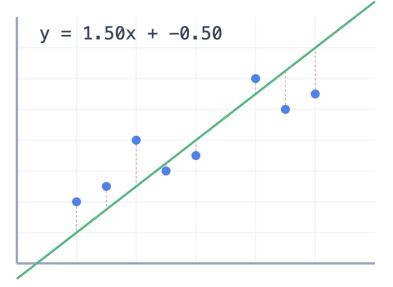
Learning function f



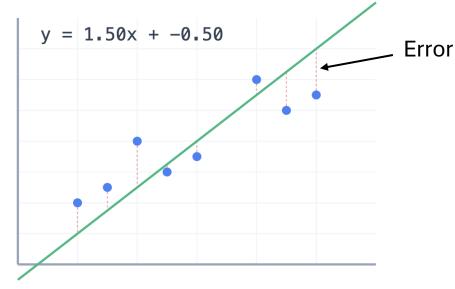
Learning function f



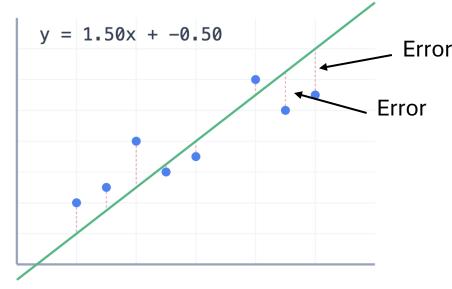
Loss Function: A function that describes how closely our approximation matches our data



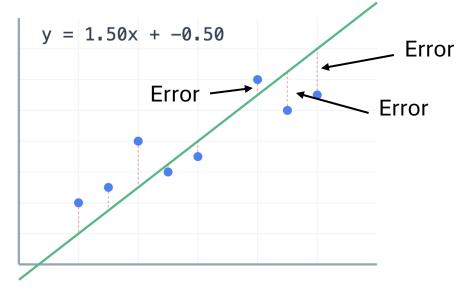
Loss Function: A function that describes how closely our approximation matches our data



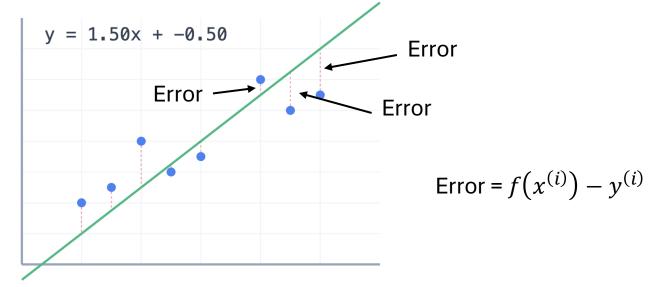
Loss Function: A function that describes how closely our approximation matches our data



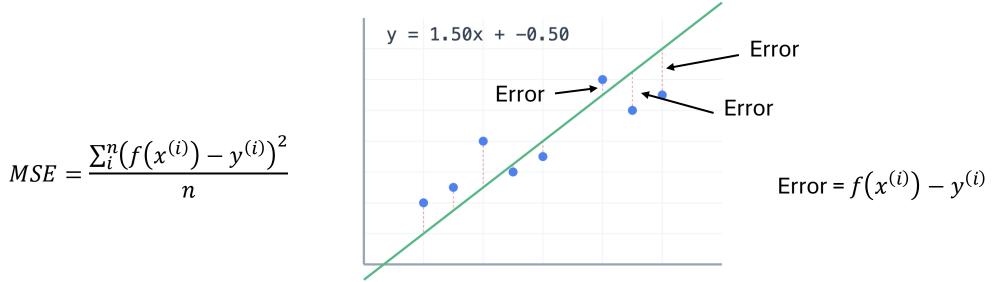
Loss Function: A function that describes how closely our approximation matches our data



Loss Function: A function that describes how closely our approximation matches our data



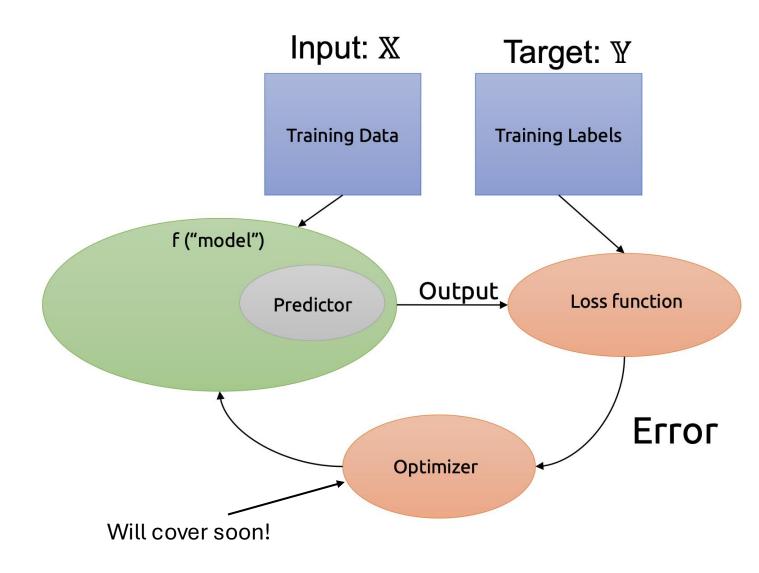
Loss Function: A function that describes how closely our approximation matches our data



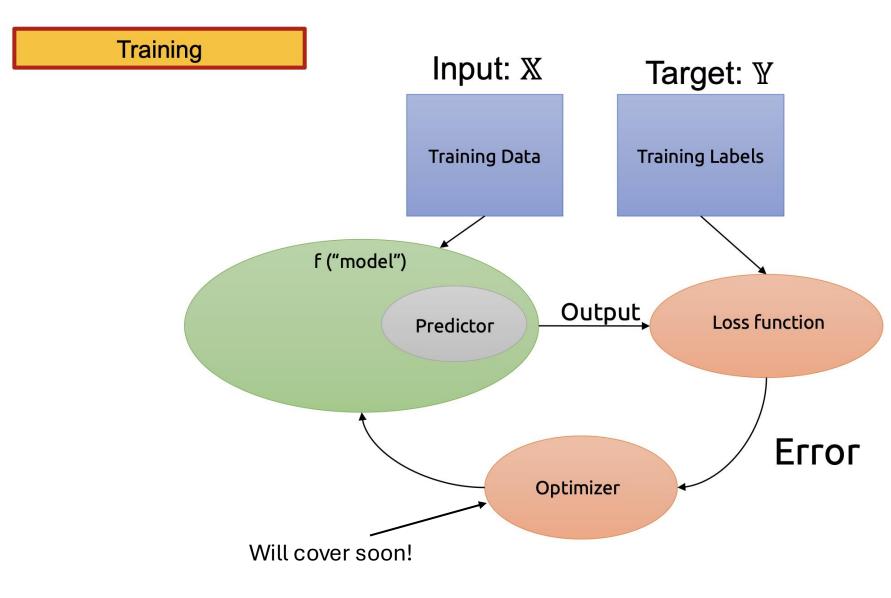
What is the best approximation?

• <u>https://brown-deep-learning.github.io/dl-website-</u> <u>s25/visualizations/visualizations.html</u>

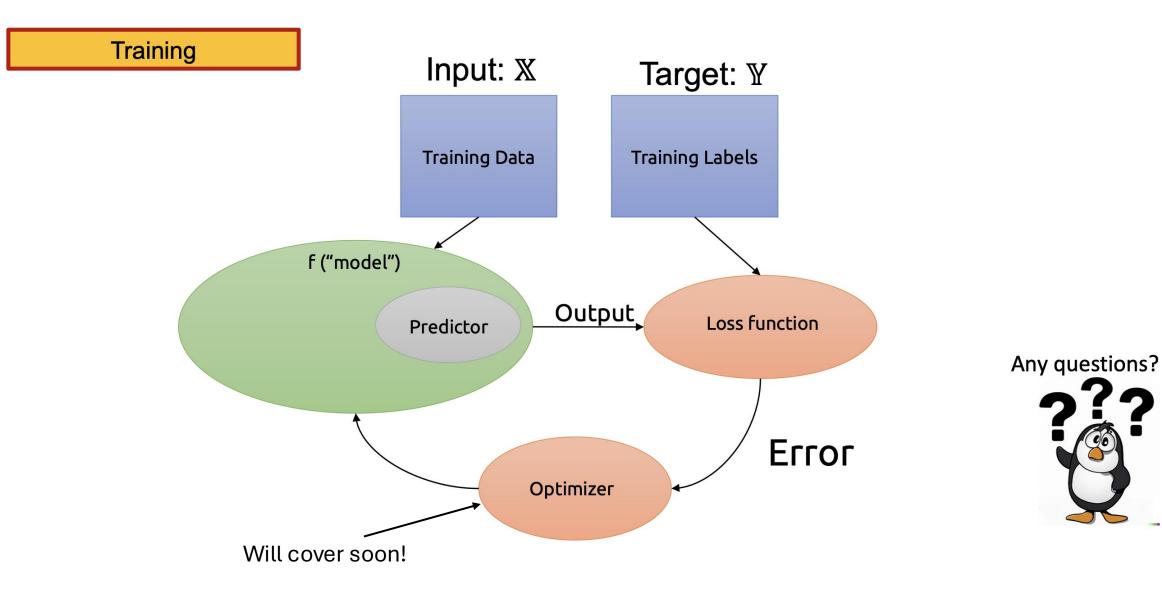
"Classic" Supervised Learning in Machine Learning



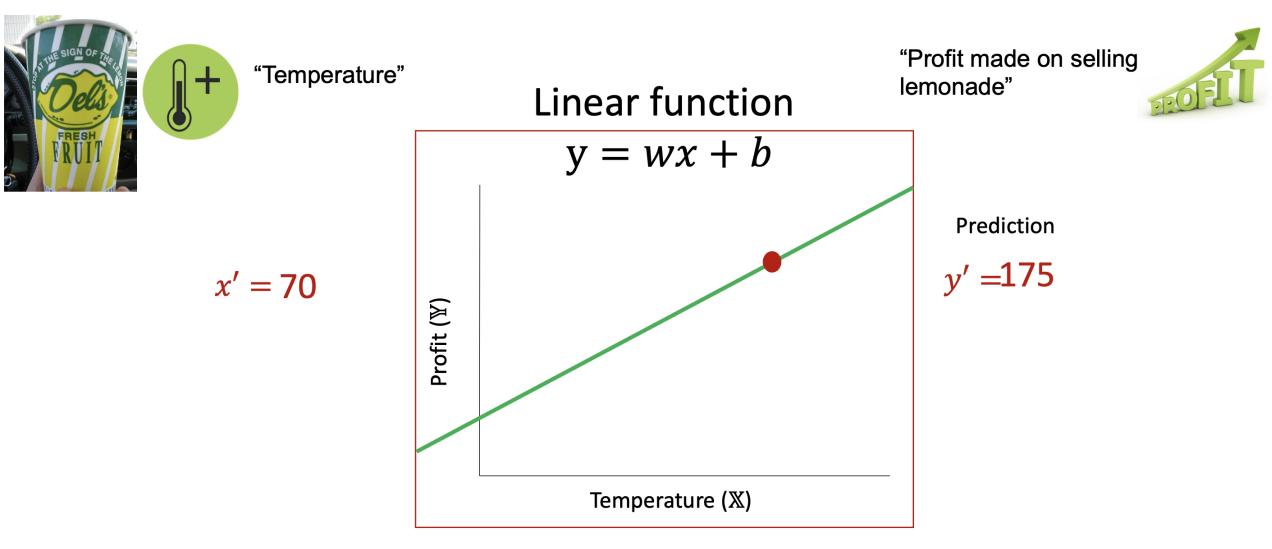
"Classic" Supervised Learning in Machine Learning



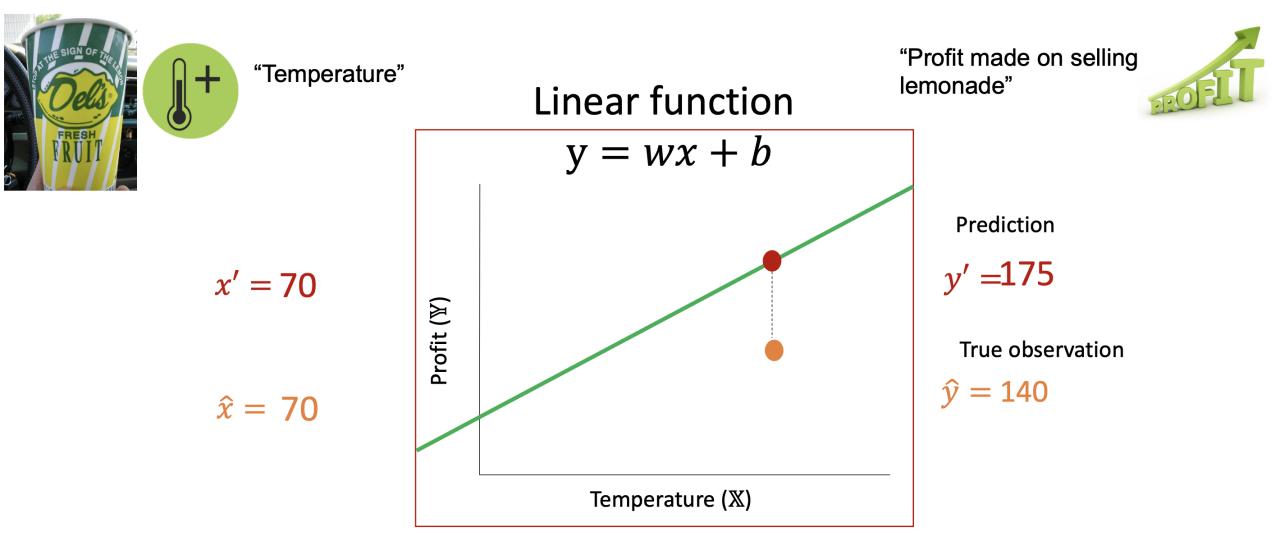
"Classic" Supervised Learning in Machine Learning



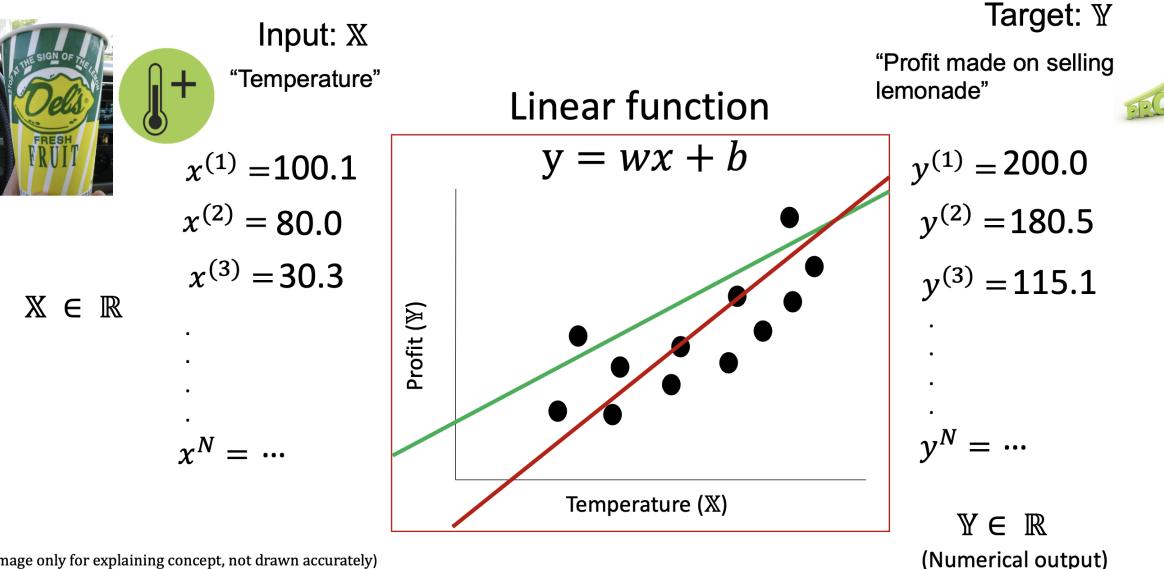
Testing our model



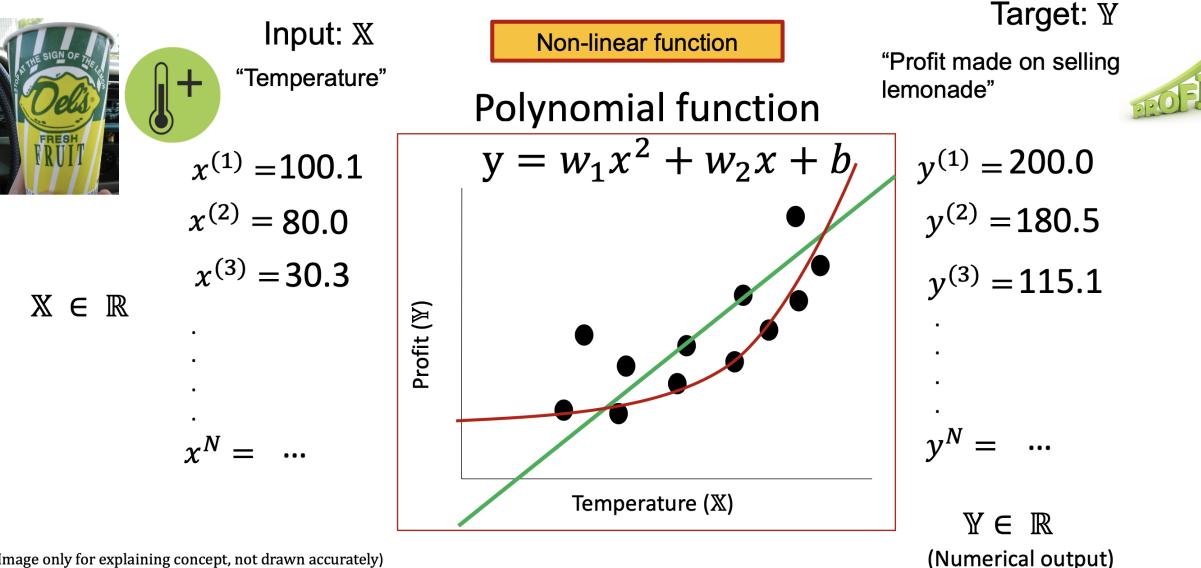
Testing our model

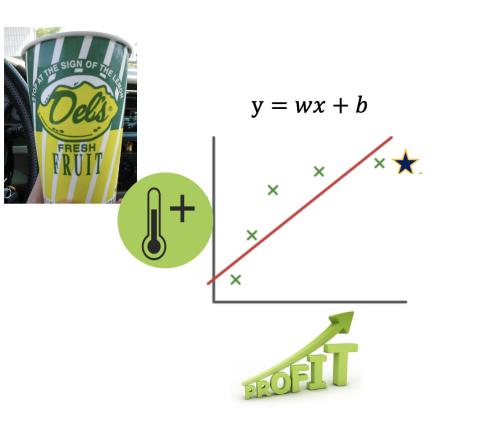


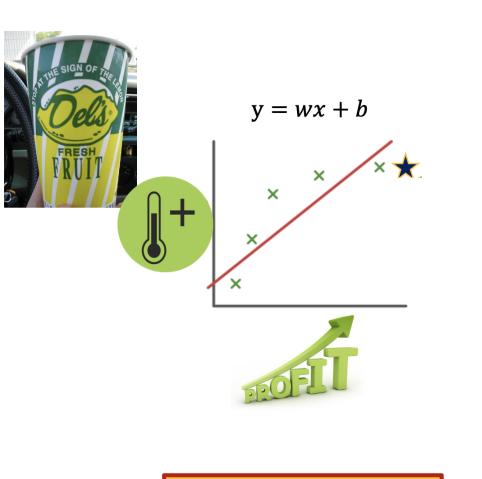
Learning better models – Collect more data



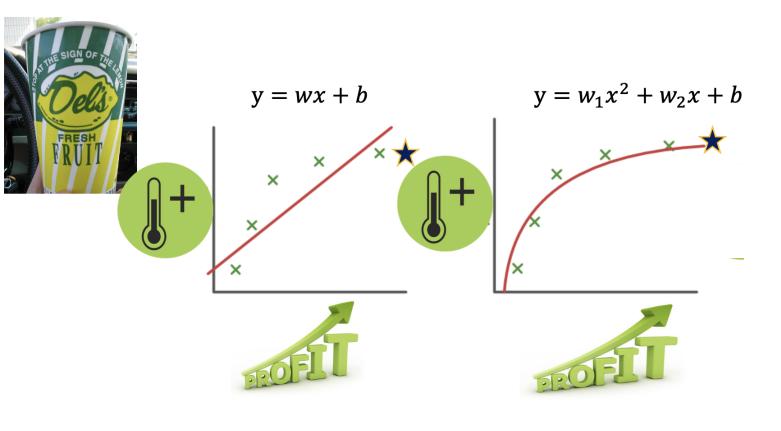
Learning better models – Try different functions



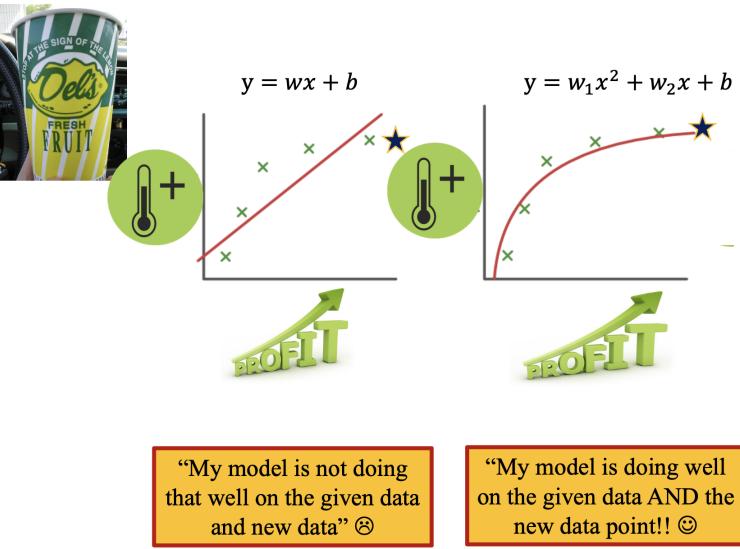


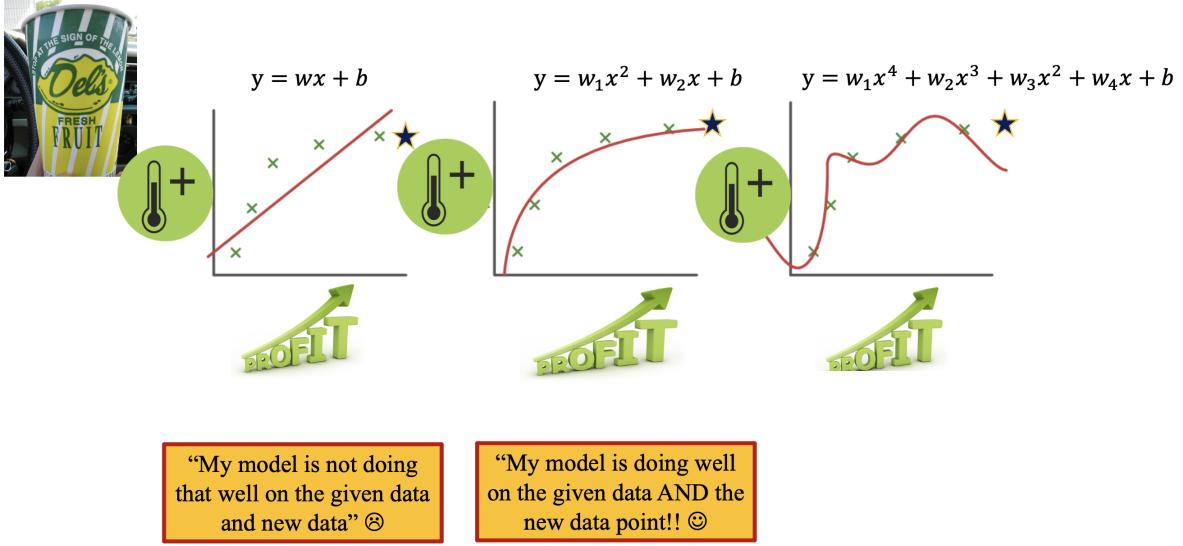


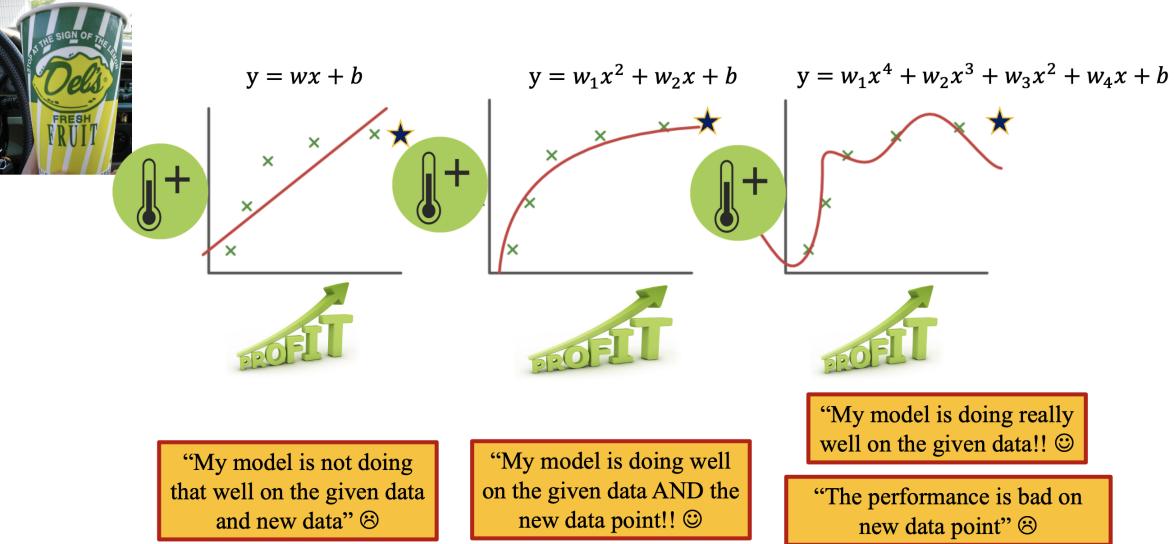
"My model is not doing that well on the given data and new data" ⊗

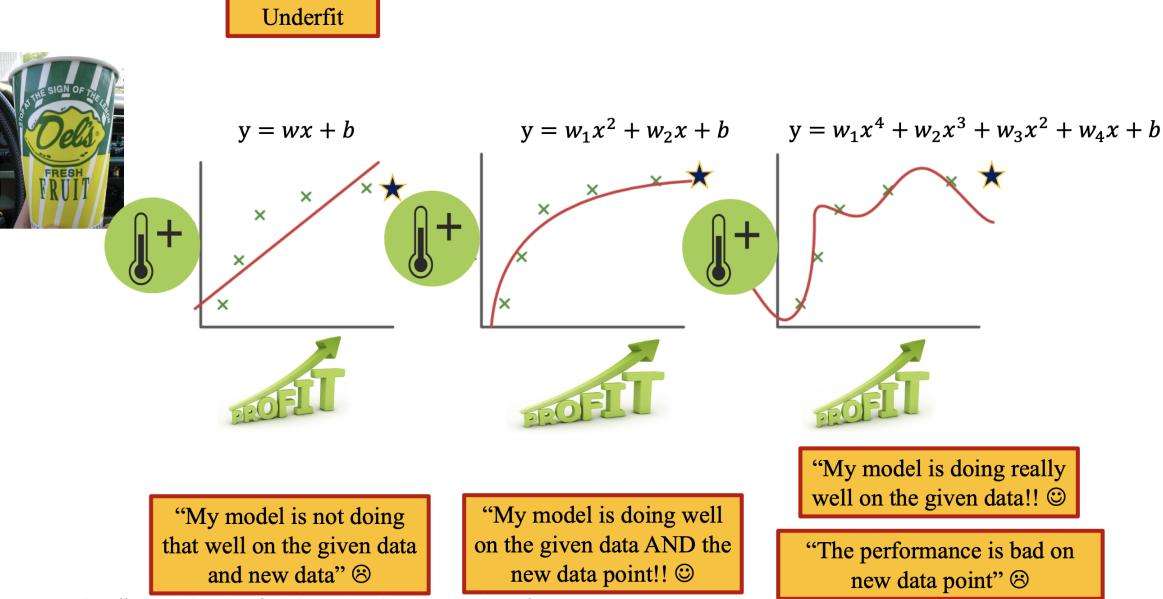


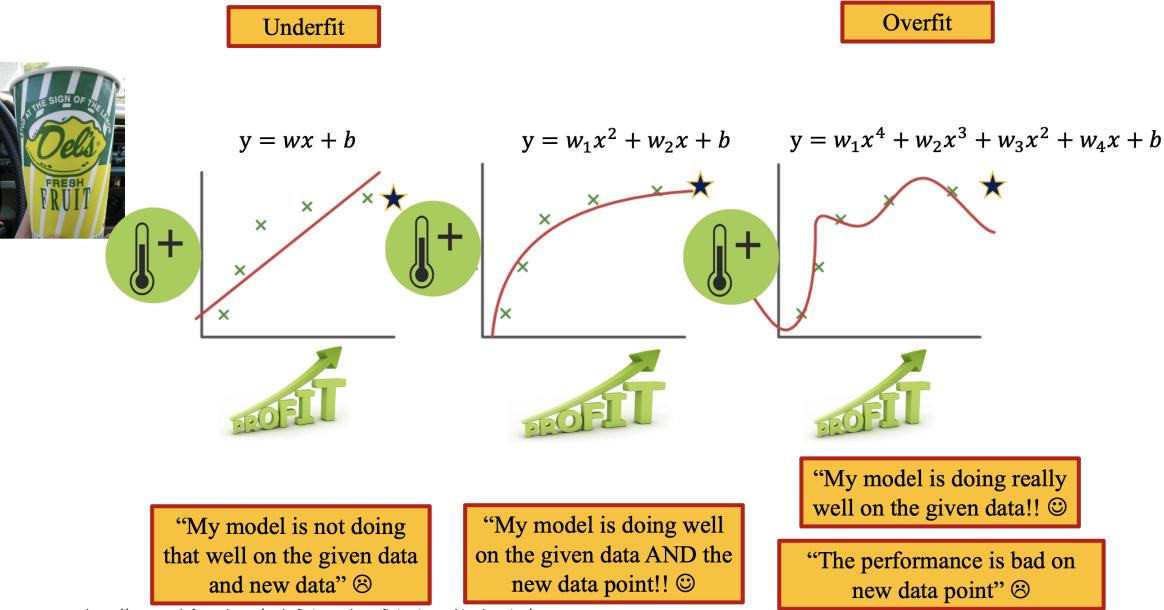
"My model is not doing					
that well on the given data					
and new data" 😕					

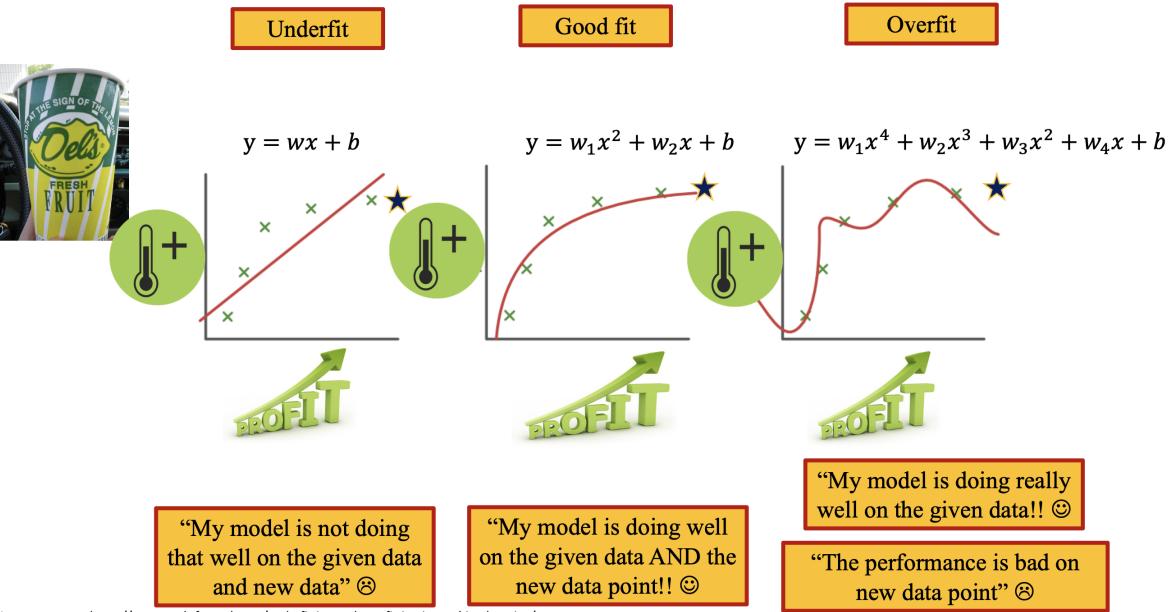








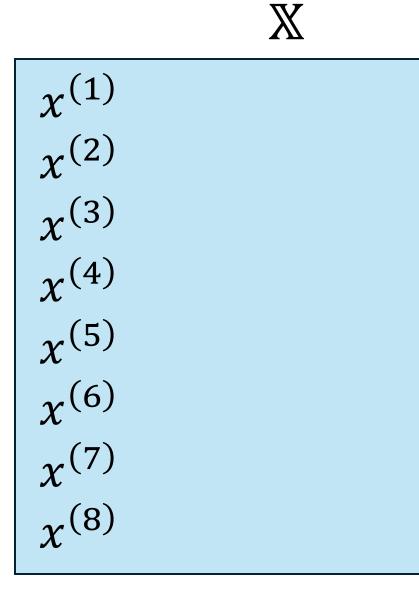




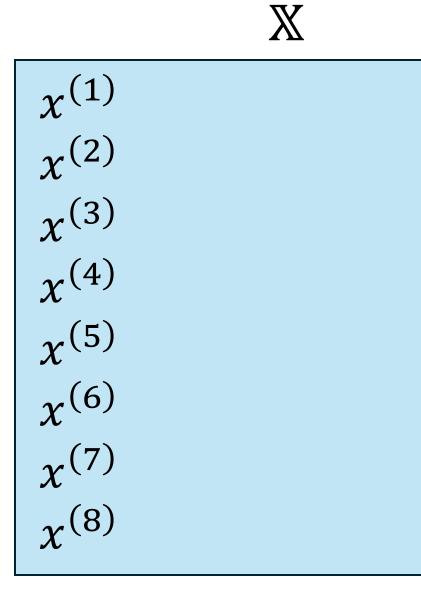
Model Complexity

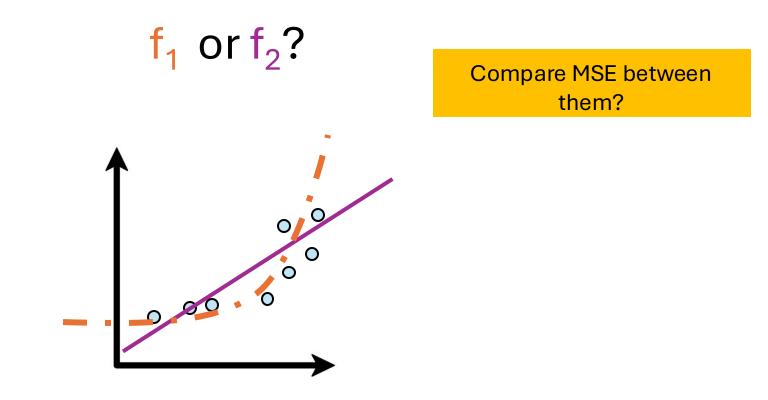
- Model complexity refers to... the model's complexity
 - Polynomial regressions are more complex than linear regressions
- Models with higher complexity can approximate more function types well
- More complex functions also **tend** to overfit

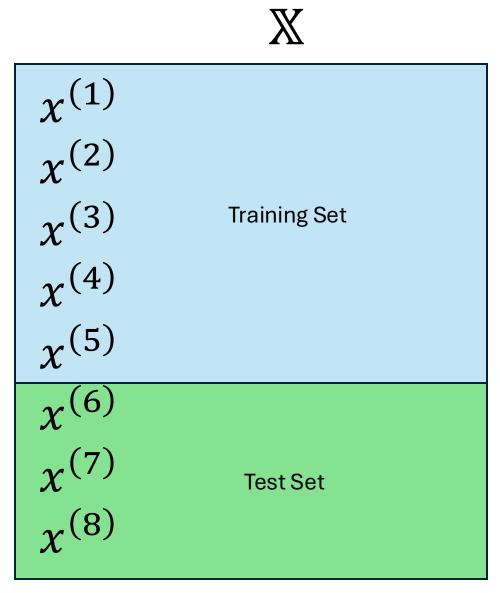
Open Question: A 100 degree polynomial tends to be way overfit. Neural Networks will be even more complex, why do neural networks not overfit?



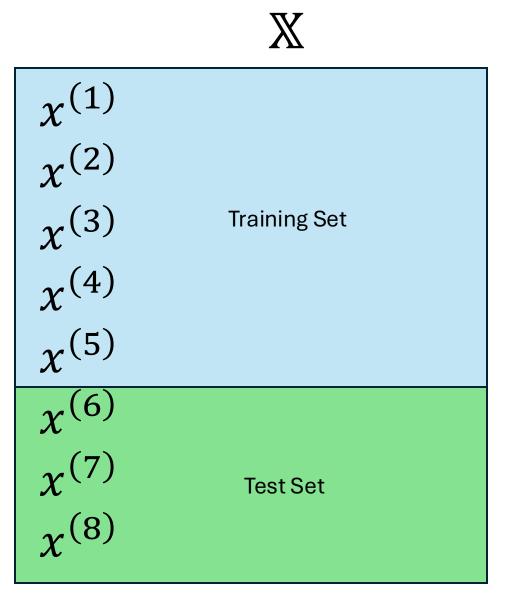
 f_1 or f_2 ? 00000000

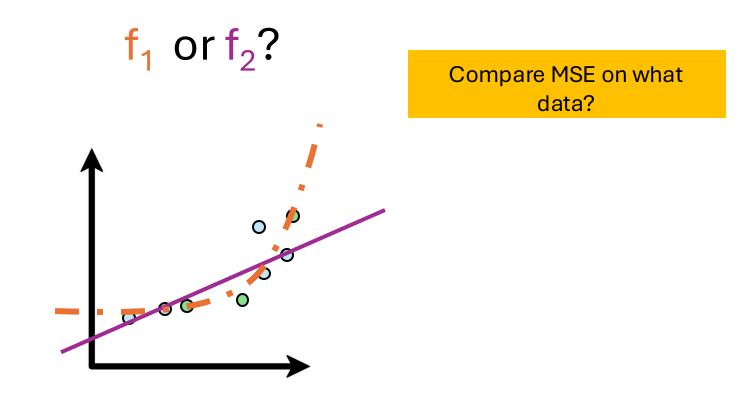


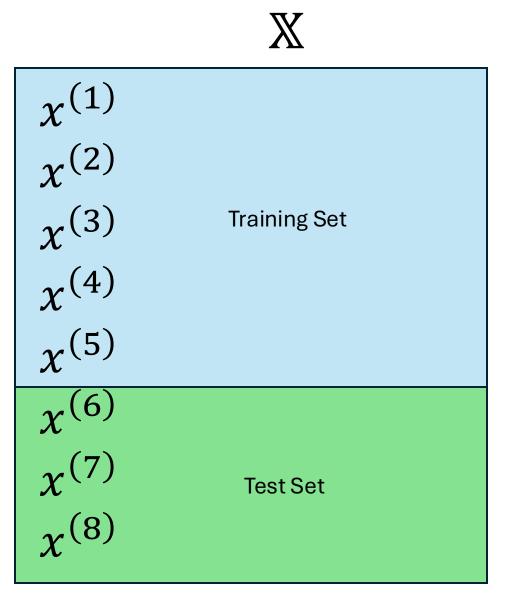


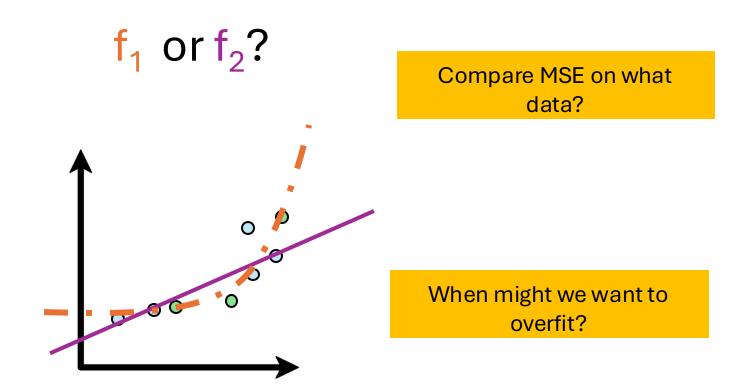


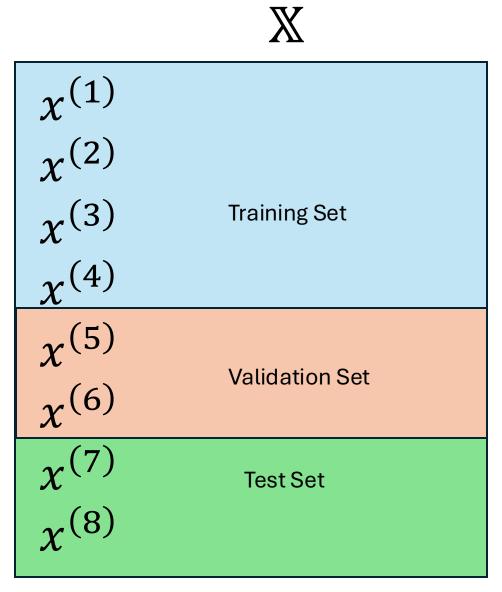
 $f_1 \text{ or } f_2?$





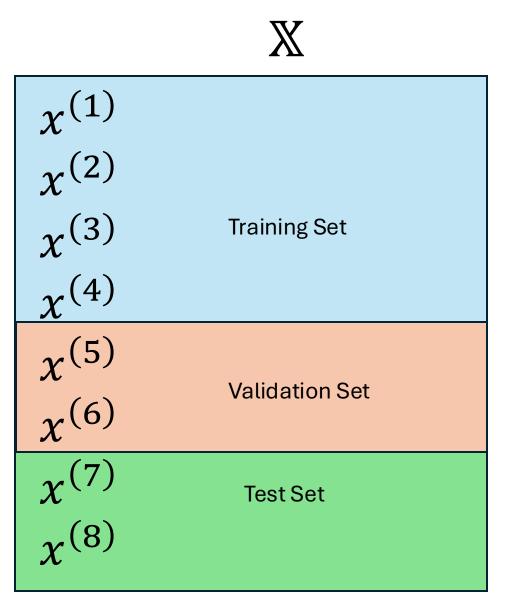






 $f_1 \text{ or } f_2?$

- 1. Train model on training set
- 2. Validate performance on validation set
- 3. Report results on test set

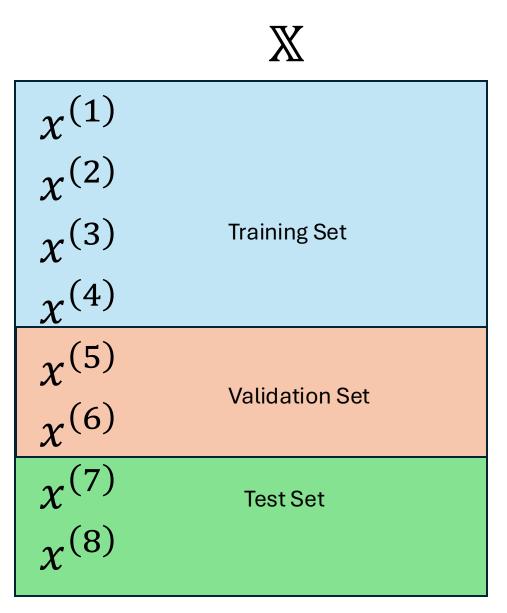


In this class

- 1. Train model on provided training data
- 2. Validate your model locally with validation set
- 3. Submit to Gradescope and we have a separate test set

In real world

- 1. Train model on provided training data
- 2. Validate your model locally with validation set
- 3. Deploy your model to real world and track performance



In this class

- 1. Train model on provided training data
- 2. Validate your model locally with validation set

Any questions? It to Gradescope and we have a separate test set

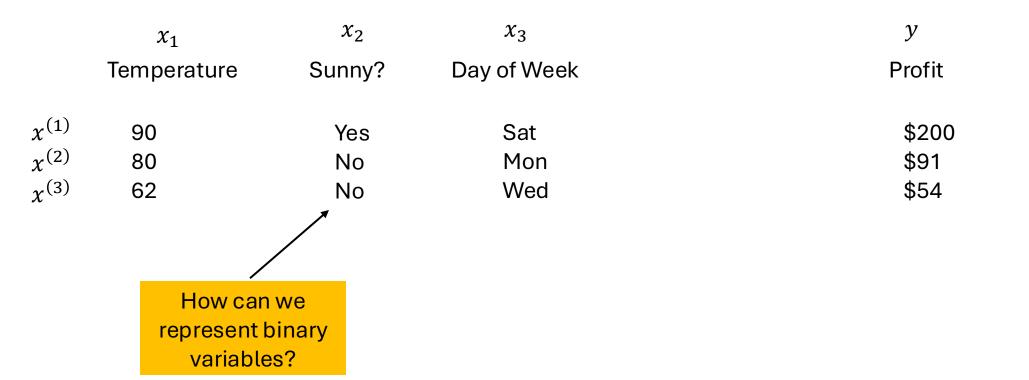
In real world

- 1. Train model on provided training data
- 2. Validate your model locally with validation set
- 3. Deploy your model to real world and track performance

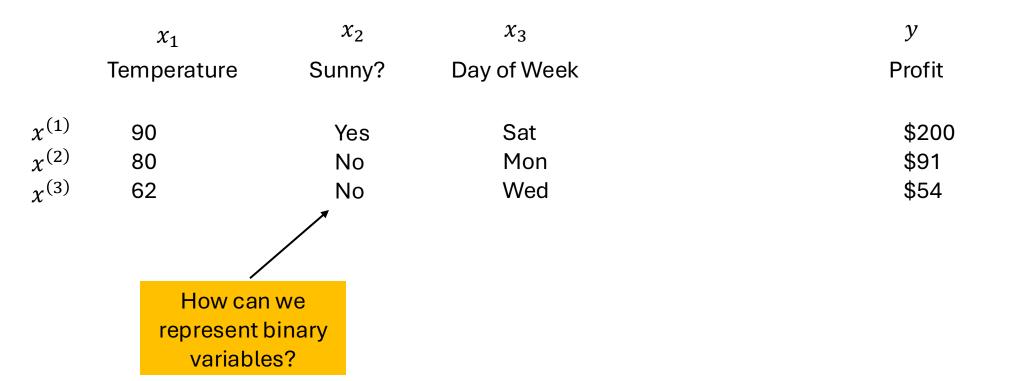
Collect additional information

	x_1	<i>x</i> ₂	<i>x</i> ₃	У
	Temperature	Sunny?	Day of Week	Profit
<i>x</i> ⁽¹⁾	90	Yes	Sat	\$200
$x^{(2)}$	80	No	Mon	\$91
$x^{(3)}$	62	No	Wed	\$54

Collect additional information

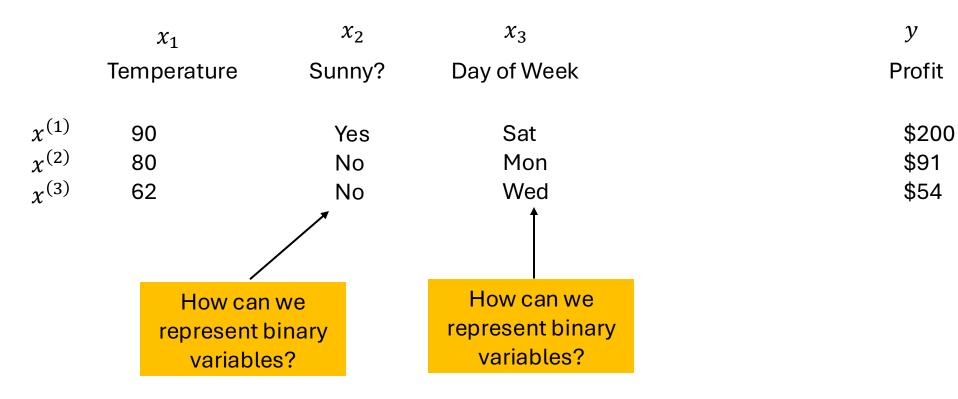


Collect additional information



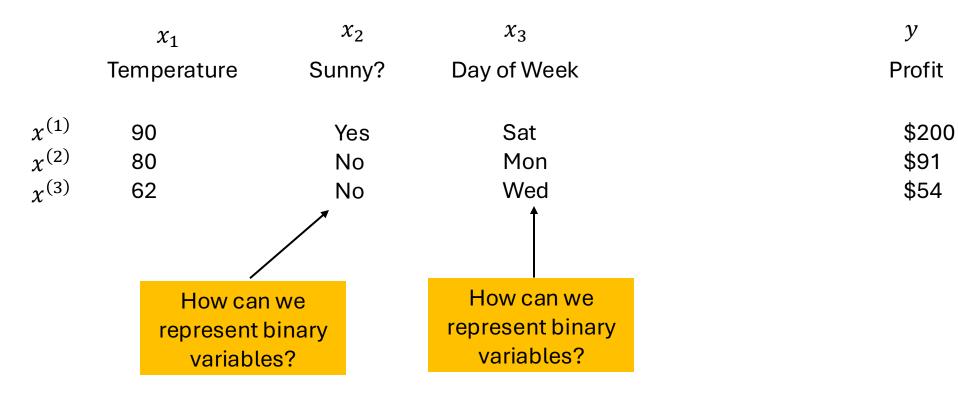
$$x_2^{(k)} \in \{0, 1\}$$

Collect additional information



 $x_2^{(k)} \in \{0, 1\}$

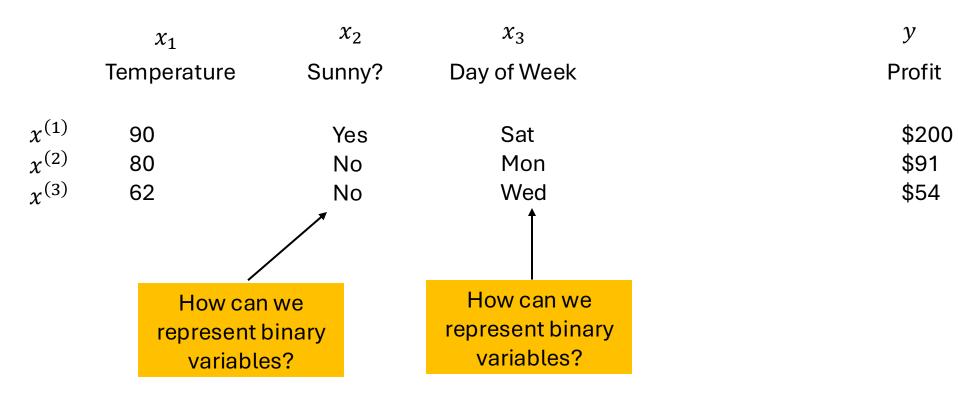
Collect additional information



Idea 1: Mon=0, Tue=1, Wed.=2

 $x_2^{(k)} \in \{0, 1\}$

Collect additional information

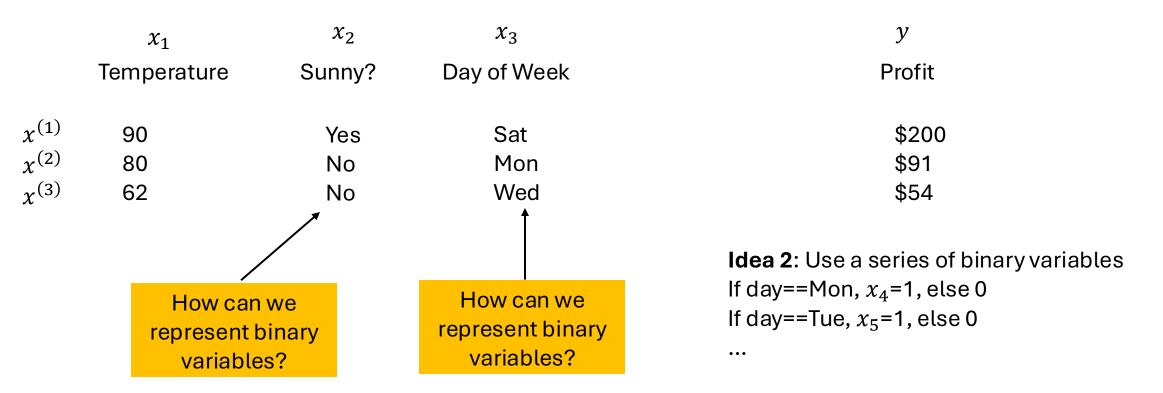


Idea 1: Mon=0, Tue=1, Wed.=2

 $x_2^{(k)} \in \{0,1\}$

The problem: Is Wednesday being 2x Tuesday meaningful? Why use this ordering and not a random ordering?

Collect additional information

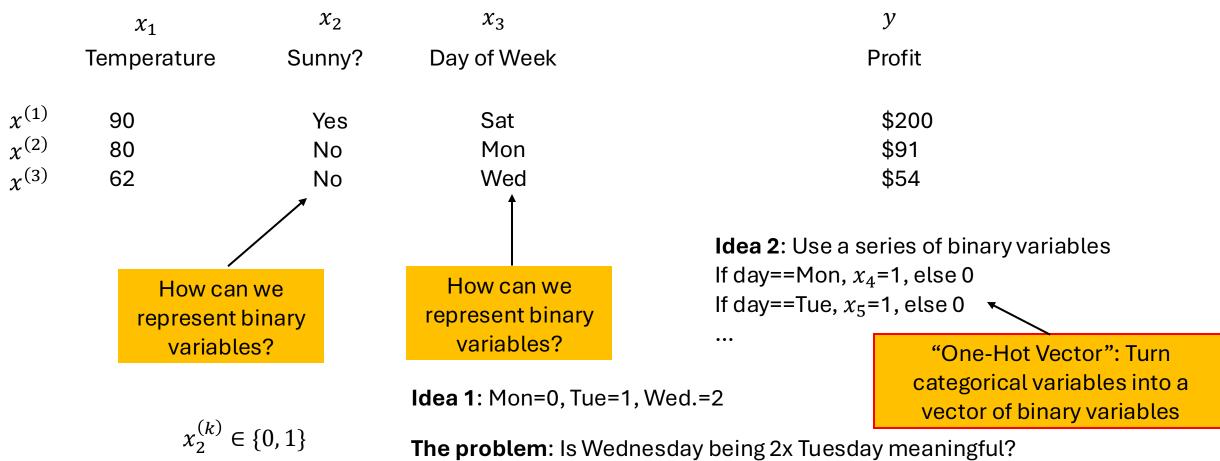


Idea 1: Mon=0, Tue=1, Wed.=2

 $x_2^{(k)} \in \{0,1\}$

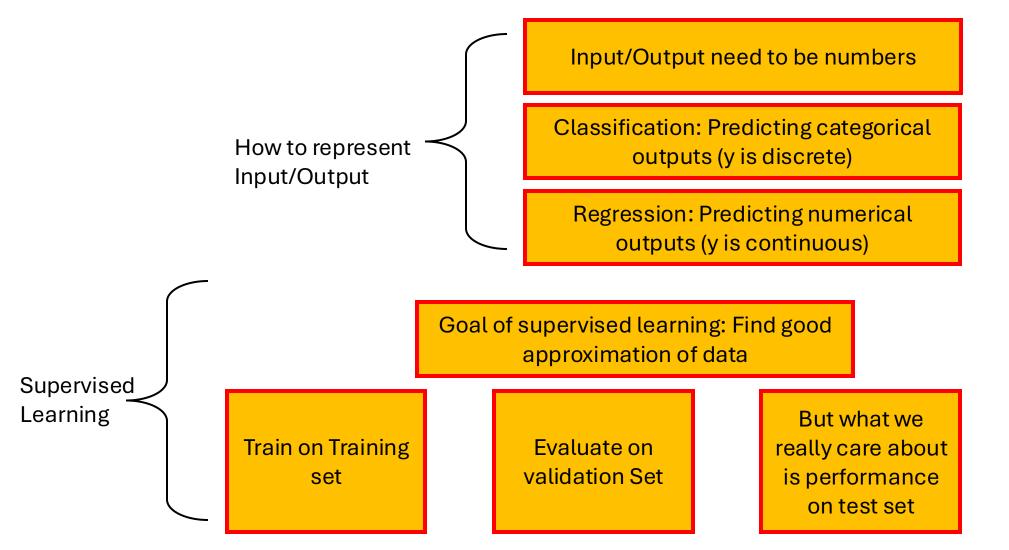
The problem: Is Wednesday being 2x Tuesday meaningful? Why use this ordering and not a random ordering?

Collect additional information



Why use this ordering and not a random ordering?

Key Ideas Review



Important Questions

- Linear Regression seeks to find a best fit function by minimizing MSE.
 - How can we find the **best** possible linear regression?
 - Are there **more than one** best fit line?
 - Why did we choose MSE? Why not Mean Error? Are there other loss functions that make sense?
- You can see how we can convert images to numbers, since pixels are stored as (r, g, b) values. But what about **other input types** like natural language? The protein for protein fold prediction? A chess board?