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What do you want to get out of the Class?

* Understanding Applications and Real-World Implementation
(36.8% of responses)

* Theoretical Understanding of Deep Learning (why it works) (35.4%
of responses)

* Career Development (a job) (28.5% of responses)
* Practical Programming Skills (22.9% of responses)
* Domain-Specific Applications (5.6% of responses)



What do you want to get out of the Class?

* Additional notable patterns:

* Interest in understanding both the theoretical and practical aspects
together

* Understand modern Al technologies better, especially in light of recent
developments

* Independent projects and gaining the confidence to implement systems
without supervision

* Interest in ethical considerations and societal impacts of deep learning



What do you wish your professors knew about
your experiences as a student?

1. Course Organization and Support (37.3% of responses)
1. Access to resources/TAs, clear deadlines and expectations, etc.

2. Background and Experience Variation (23.0% of responses)
2. For some people, this is their first course in Python
3. For many students, this is their first course in Al
4. Just because you’ve taken linear algebra doesn’t mean you remember anything

3. Workload and Time Management (15.1% of responses)
3. Students are stressed, especially around exam weeks

4. Learning Preferences and Styles (12.7% of responses)
4. Many students prefer project-based learning

5. Career and Future Goals (6.3% of responses)
5. Internship/job interviews can cause conflicts
6. Goal of your education is to get a job after and want to work towards that goal

6. Accessibility Needs (4.0% of responses)



What do you want to get out of the Class?

e A seat...

Any pending override approvals not accepted by 5pm today will be
revoked and new overrides will be given out.

Aiming for ~225 students



Recap: Machine Learning
Input: X Output: Y

”Cooking?”




Todays Goals

1) How do we represent Input/Output? What are X and y?
2) How can we learn a function f?

3) How doyou know if a ML modelis “Good”?
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Some Notation

R: The set of real numbers

v € R%: Avector in dimension d

V € RF*W. A matrix of dimensions H x W

V € RE*XWXC. A tensor of dimensions H X W x C

X: A set of input data

Y: A set of target variables (outputs/labels) for supervised learning
x(®): k’th example (input) from dataset

y(®): k’th example (output) associated with x ()
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equation before?

Learning function f

Target: Y

Input: X f ' >
“Profit made on selling X
-4 “Temperature” . . : P d
@ Linear function lemonade solL L
@ =100.1 y=wx-+b y@® =200.0
(x®, y®
(x@,y@) "
y = 2x
xemr x®=800 _ y(2) =180.5
x® =303 - y®3) =115.1
Ye R
Temperature (X) (Numerical output)

(Image only for explaining concept, not drawn accurately)



Learning function f

Input: X | Target: Y -
e (B . , “Profit made on selling 4
i 4 “Temperature . . " <1
' Linear function emonade 0ld
@ =100.1 y=wx-+b y@® =200.0
(x®, y®
(x®,y®) '8
B y = 2x
xemr x®=800 _ y=x+109 y(2) =180.5
x® =303 |~ y®3) =115.1
Ye R
Temperature (X) (Numerical output)

(Image only for explaining concept, not drawn accurately)



Learning function f

Target: Y
b Input: X arget >
| . , “Profit made on selling 4
. -+ “Temperature . . I de” P d
“ @ Linear function emonace Lt
*® =100.1 y = wx + b() ) y@ =200.0
(xW,yD)
(x®@,y@) g
y = 2x
= 100 —
xemr x®=800 _ y=x+ y(2) =180.5
al3) 2N n o y(3) =1151
Bias term is necessary for
best fit line to fit the data
well Ye R
Temperature (X) (Numerical output)

(Image only for explaining concept, not drawn accurately)



Learning function f

Input: X | Target: Y -
“Profit made on selling A
4 “Temperature” . . " 27 |
ﬂ Linear function lemonade a0t
@ =100.1 y=wx-+b y@® =200.0
x@ 5@
(x(Z),y(zg) 2
y = 2x
(2) — y =x+ 100 (2) =1 .
X € R X 380.0 = =S y 80.5
jg/
x® =303 |~ y®3) =115.1
Ye R

Temperature (X) (Numerical output)

(Image only for explaining concept, not drawn accurately)



Learning function f

Input: X | Target: Y -
“Profit made on selling Z
4 “Temperature” . . I de” 27 |
ﬂ Linear function emonade a0t
*® =100.1 y = wx + b() ) y@ =200.0
(xW,yD)
(x®@,y@) y
y = 2x
(2) — y=x+100 (2) =180.5
xer *?=800 | - y
x® =303 |~ y®3) =115.1
Hard to find these Ye R
functions by hand... Temperature (X) (Numerical output)

(Image only for explaining concept, not drawn accurately)



Learning function f
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What makes a good approximation?

Loss Function: A function that describes how closely our
approximation matches our data

The standard loss function for Linear Regression is Mean Squared
Error (MSE)

y = 1.50x + -0.50

— Error

[ ]
Error —
.\ Error

EP( () =y )" P
MSE == m . Error = f(x®) — y®




What is the best approximation?

* https://brown-deep-learning.github.io/dl-website-

s25/visualizations/visualizations.html



https://brown-deep-learning.github.io/dl-website-s25/visualizations/visualizations.html
https://brown-deep-learning.github.io/dl-website-s25/visualizations/visualizations.html
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“Classic” Supervised Learning in Machine Learning

Training
Input: X Target: Y
Training Data Training Labels
F (“model”) \
Predictor OUtpUt> Loss Function

Any questions?

n?9

E Gy
\ Optimizer / rror
/ - _

Will cover soon!
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Testing our model

(Image only for explaining concept, not drawn accurately)

Linear function

“Profit made on selling
lemonade”

Profit (Y)

\

y=wx+b

Temperature (X)

Prediction

y' =175

True observation

y =140




Learning better models — Collect more data
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Learning better models — Try different functions
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Model Complexity

* Model complexity refers to... the model’s complexity
* Polynomial regressions are more complex than linear regressions

* Models with higher complexity can approximate more function
types well

* More complex functions also tend to overfit

Open Question: A 100 degree polynomial tends to
be way overfit. Neural Networks will be even more
complex, why do neural networks not overfit?
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How to know which function is the best?
X
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(7) 1. Train model on training set
Test Set 2. Validate performance on validation set
(8) 3. Report results on test set
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How to know which function is the best?

X
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Test Set

In this class

. Train model on provided training data
. Validate your model locally with validation set
. Submitto Gradescope and we have a separate test set

In real world

. Train model on provided training data
. Validate your model locally with validation set
. Deployyour model to real world and track performance



How to know which function is the best?
X

In this class
X (1) 1. Train model on provided training data
2. Validate your model locally with validation set
X (2) Any questions? litto Gradescope and we have a separate test set
3) Training Set
x (
(@
X (5) ; In real world
(6) Validation Set 1. Train model on provided training data
X 2. Validate your model locally with validation set
3. Deployyour model to real world and track performance
X (7) Test Set

£(®
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Other ways to improve performance

Collect additional information

X1 X2
Temperature Sunny?
90 Yes
80 No
62 No
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represent binary
variables?
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X3 y
Day of Week Profit
Sat $200
Mon $91
Wed $54
‘ Idea 2: Use a series of binary variables
How can we |fdaij0n: xi=1,else0
represent binary If day==Tue, x5=1, else 0 \
variables? “One-Hot Vector”: Turn

categorical variables into a

Idea 1: Mon=0, Tue=1, Wed.=2 . .
vector of binary variables

The problem: Is Wednesday being 2x Tuesday meaningful?
Why use this ordering and not a random ordering?



Key Ildeas Review

How to represent <

Input/Output

N—

Input/Output need to be numbers

Classification: Predicting categorical
outputs (y is discrete)

Regression: Predicting numerical
outputs (y is continuous)

Goal of supervised learning: Find good

approximation of data

Supervised

Learning <

Train on Training
set

But what we
Evaluate on really care about
validation Set is performance
on test set




Important Questions

* Linear Regression seeks to find a best fit function by minimizing
MSE.
* How can we find the best possible linear regression?
* Are there more than one best fit line?

* Why did we choose MSE? Why not Mean Error? Are there other loss
functions that make sense?

* You can see how we can convert images to numbers, since pixels
are stored as (r, g, b) values. But what about other input types like
natural language? The protein for protein fold prediction? A chess
board?
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