**CSCI 1470** 

# Deep Learning

Eric Ewing

Friday, 3/7/25

Day 18: RNNs and LSTMs

### Some Game Theory

### Other Updates

- Will try to handle point deductions over the weekend
- For those who didn't come forward:
  - I will (eventually) look at **all** submissions and look for known AI patterns and send cases I'm certain of.
  - This won't be quick... I'll prioritize seniors and masters students first

### Recurrent Neural Network (RNN)

Recurrent Neural Networks are networks in the form of a directed cyclic graph.

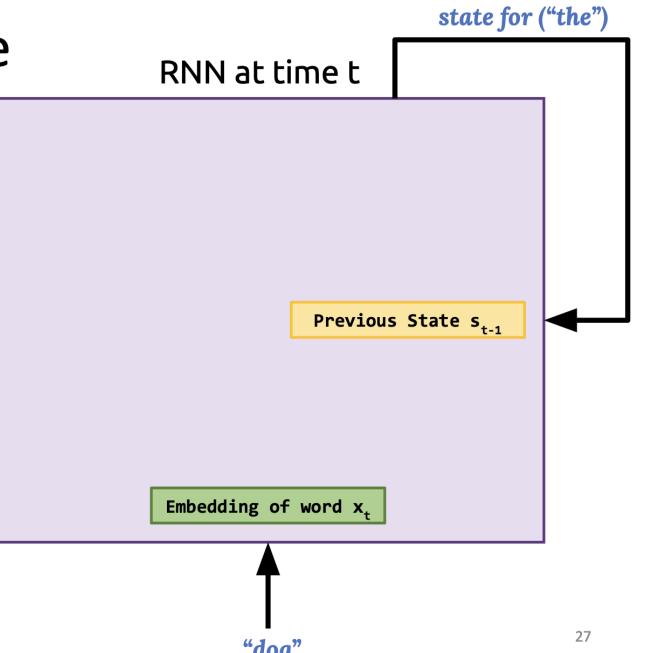
They pass previous *state* information from previous computations to the next.

They can be used to process sequence data with relatively low model complexity when compared to feed forward models.

The block of computation that feeds its own output into its input is called the RNN cell.

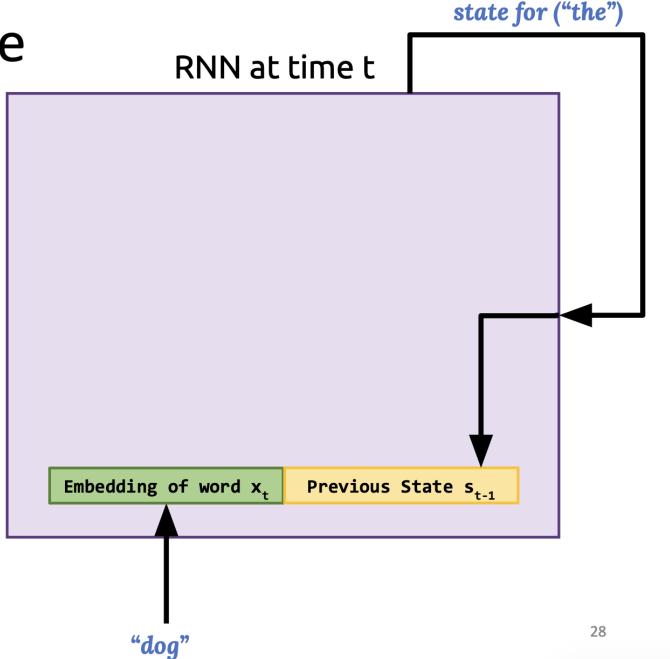
Let's see how we can build one!

At each step of our RNN, we will get an input word, and a state vector from the previous cell.



At each step of our RNN, we will get an input word, and a state vector from the previous cell.

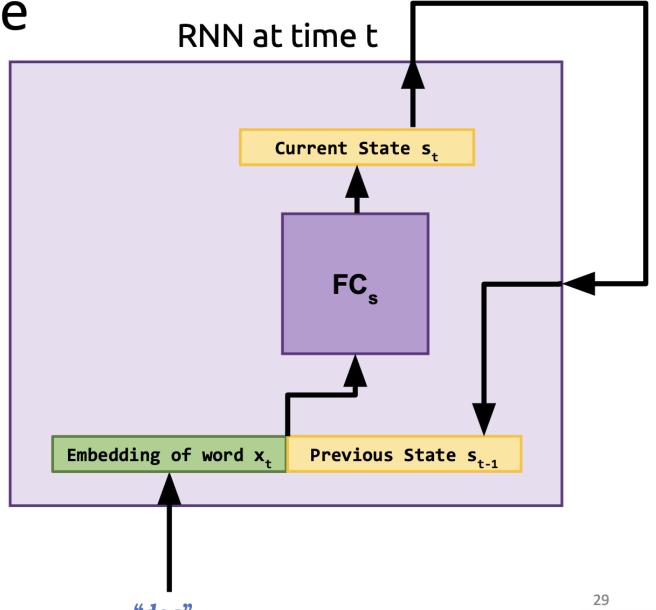
We then concatenate the embedding and state vectors.



At each step of our RNN, we will get an input word, and a state vector from the previous cell.

We then concatenate the embedding and state vectors.

We use a fully connected layer to compute the next state

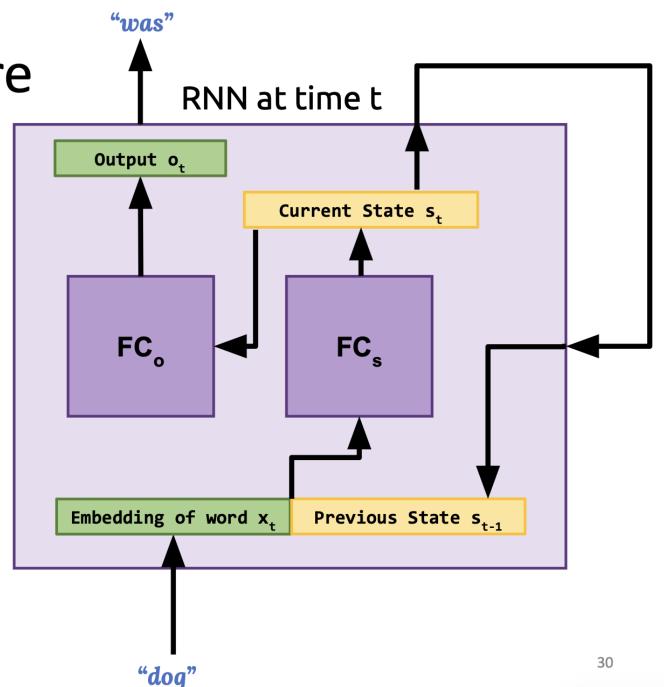


At each step of our RNN, we will get an input word, and a state vector from the previous cell.

We then concatenate the embedding and state vectors.

We use a fully connected layer to compute the next state

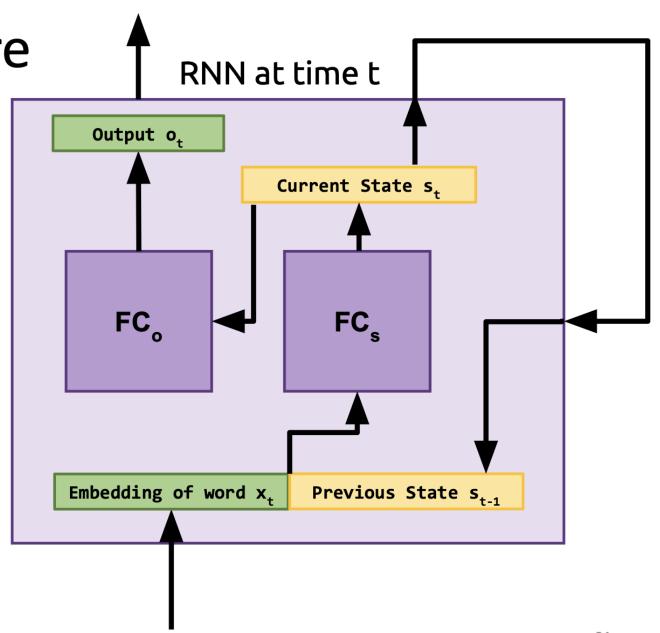
We use another connected layer to get the output.



We can represent the RNN in with the following equations:

$$s_t = \rho \big( (e_t, s_{t-1}) W_r + b_r \big)$$

$$o_t = \sigma(s_t W_o + b_o)$$



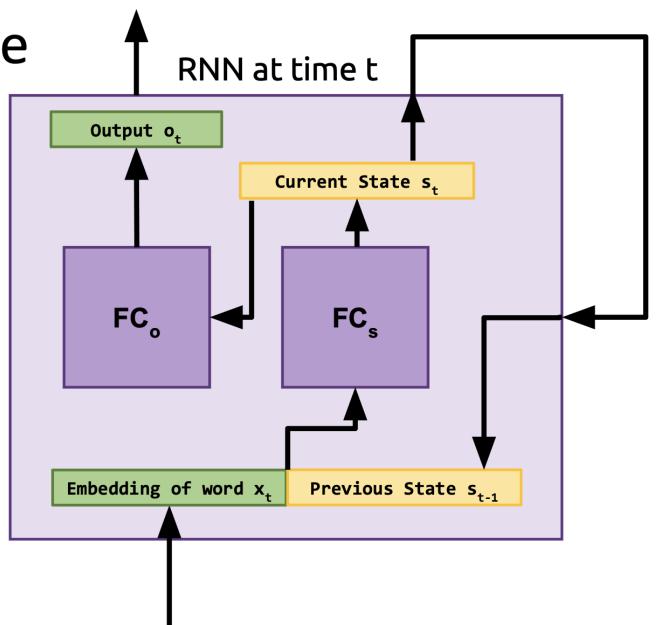
We can represent the RNN in with the following equations:

$$s_t = \rho ((e_t, s_{t-1})W_r + b_r)$$

$$o_t = \sigma(s_t W_o + b_o)$$

Nonlinear activations (e.g. sigmoid, tanh)

Any questions?



We can represent the RNN in with the following equations:

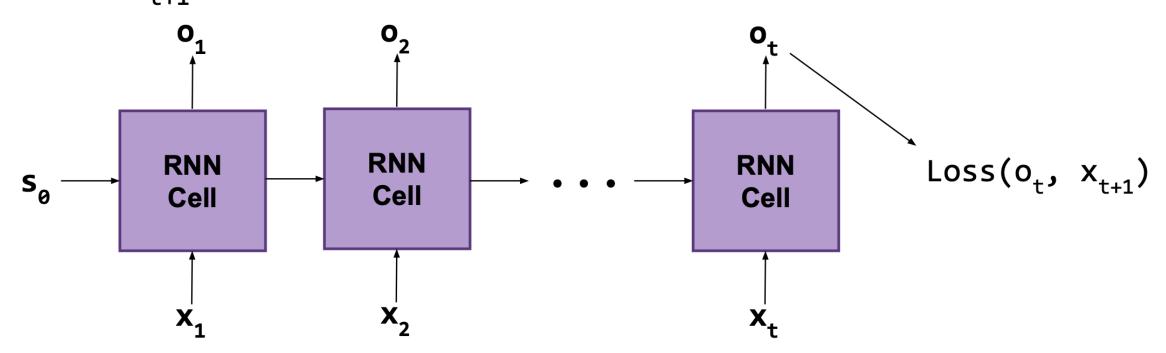
$$s_t = \rho \big( (e_t, s_{t-1}) W_r + b_r \big)$$

$$o_t = \sigma(s_t W_o + b_o)$$

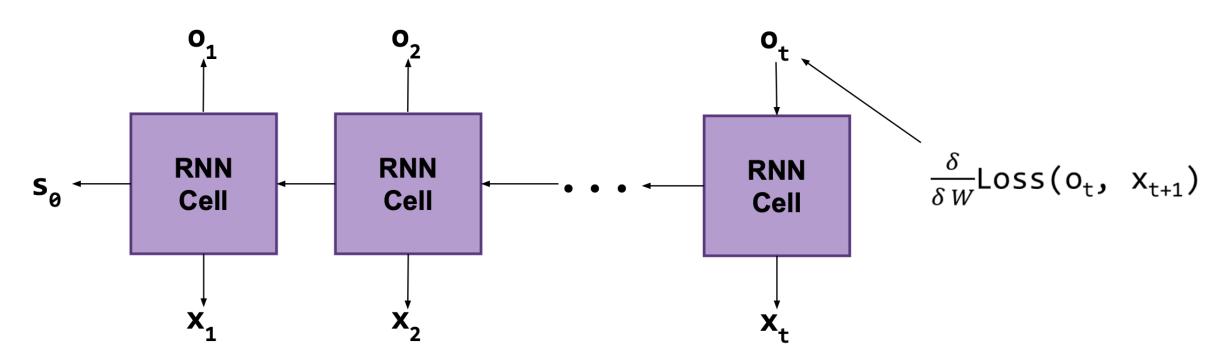
This brings up an immediate question: what is  $s_0$ ?

Typically, we initialize  $s_0$  to be a vector of zeros (i.e. "initially, there is no memory of any previous words")

We can calculate the cross entropy loss just as before since for any sequence of input words  $(x_1, x_2, ..., x_t)$ , we know the true next word  $x_{+11}$ 

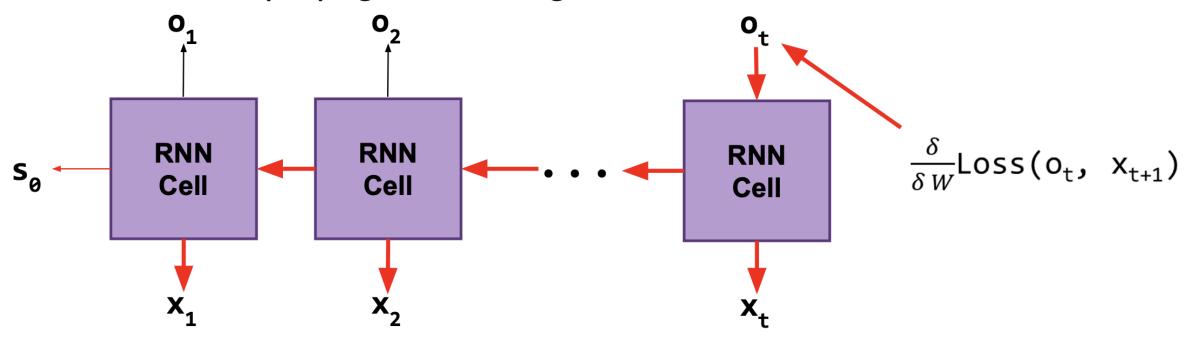


But what happens when we differentiate the loss and backpropagate?

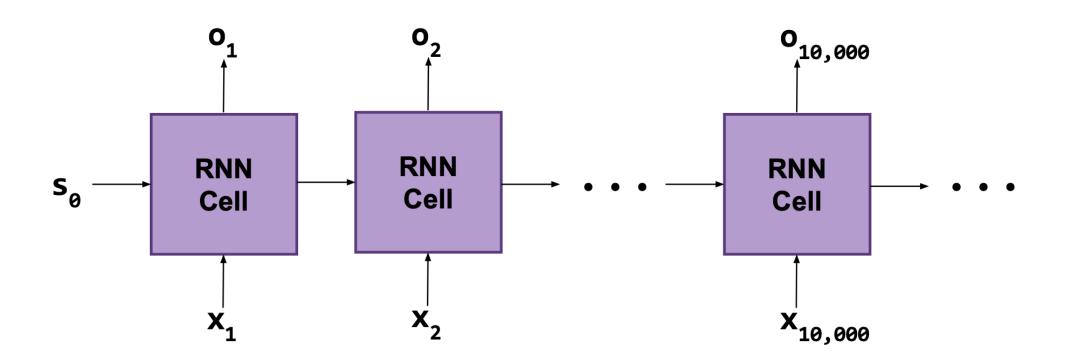


Not only do our gradients for  $o_t$  depend on  $x_t$ , but also on all of the previous inputs.

We call this backpropagation through time.



With this architecture, we can run the RNN cell for as many steps as we want, constantly accumulating memory in the state vector.



Solution: We define a new hyperparameter called window\_sz.

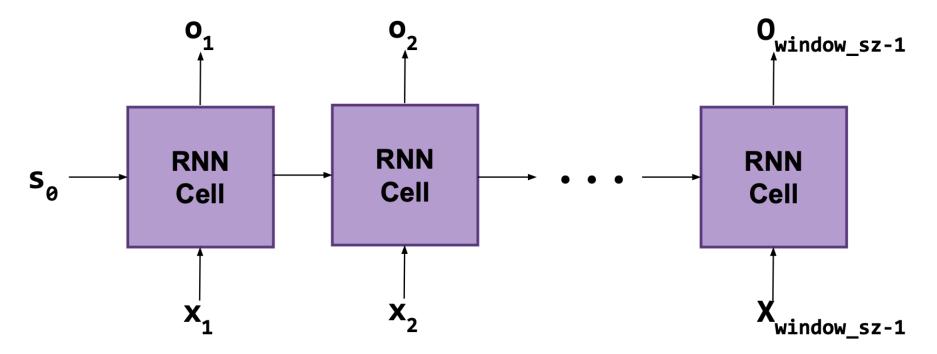
We now chop our corpus into sequences of words of size window\_sz

The new shape of our data should be:

(batch\_sz, window\_sz, embedding\_sz)

Each example in our batch is a "window" of window\_sz many words. Since each word is represented as an embedding\_sz, that is the last dimension of the data.

Now that every example is a window or words, we can run the RNN till the end of that window, and compute the loss for that specific window and update our weights



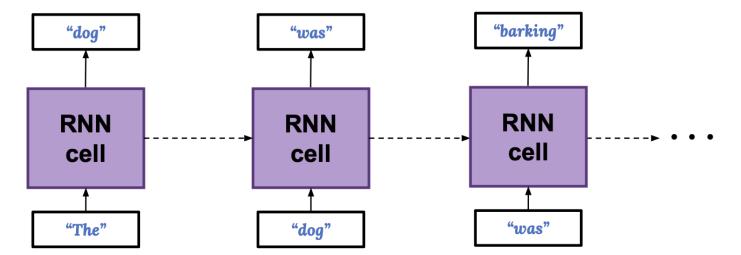
#### Any questions?

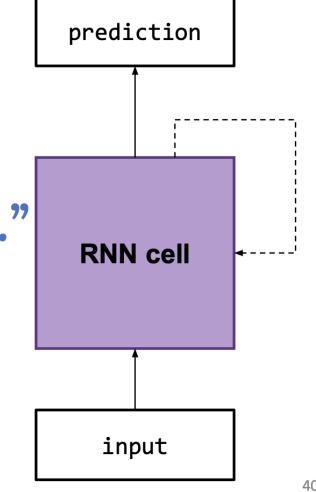
### Does RNN fix the limitations of the N-gram model?



- Number of of weights not dependent on N
- State gives flexibility to choose context from near or far

### "The dog was barking at one of the cats."





RNNs can be built from scratch using Python for loops:

```
prev state = Zero vector
for i from 0 to window_sz:
  state and input = concat(inputs[i], prev state)
  current state = fc state(state and input)
  outputs[i] = fc output(current state)
  prev state = current state
return outputs
```

RNNs can be built from scratch using Python for loops.

There's also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return\_sequences)

RNNs can be built from scratch using Python for loops.

There's also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return\_sequences)

The size of our output vectors

RNNs can be built from scratch using Python for loops.

There's also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return\_sequences)

The activation function to be used in the FC layers inside of the RNN Cell

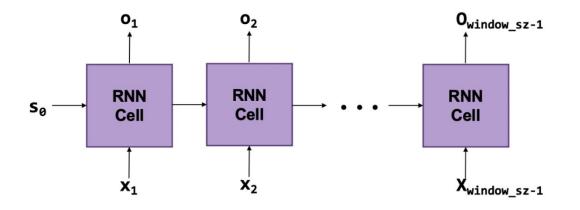
Any intuition why we would want return\_sequences to be TRUE?

#### RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.

There's also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return\_sequences)



- If True: calling the RNN on an input sequence returns the whole sequence of outputs + final state output
- If False: calling the RNN on an input sequence returns just the final state output (Default)

RNNs can be built from scratch using Python for loops.

There's also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return\_sequences)

```
Usage:
```

```
RNN = SimpleRNN(10) # RNN with 10-dimensional output vectors
Final_output = RNN(inputs) # inputs: a [batch_sz, seq_length, embedding_sz] tensor
```

#### **RNN**

"The dog that my family had when I was a child had a fluffy

Want: "tail"



### **RNN** Weaknesses

But....RNNs are not very good at remembering things *far* in the past.



#### RNN Weaknesses

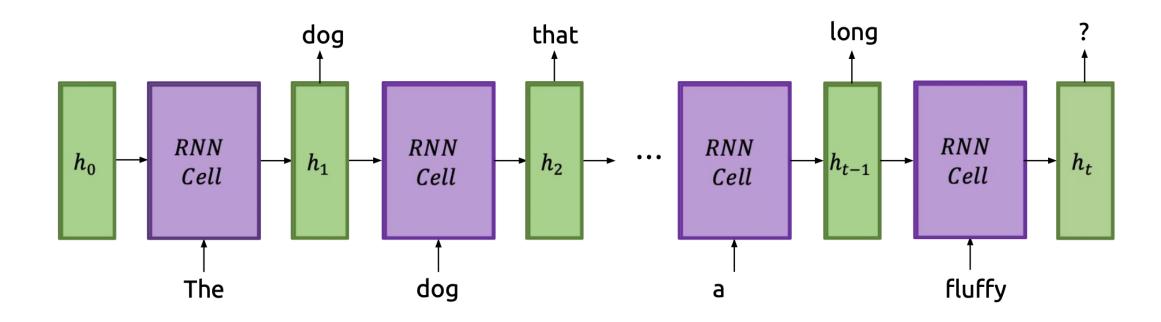
"The dog that my family had when I was a child had a fluffy

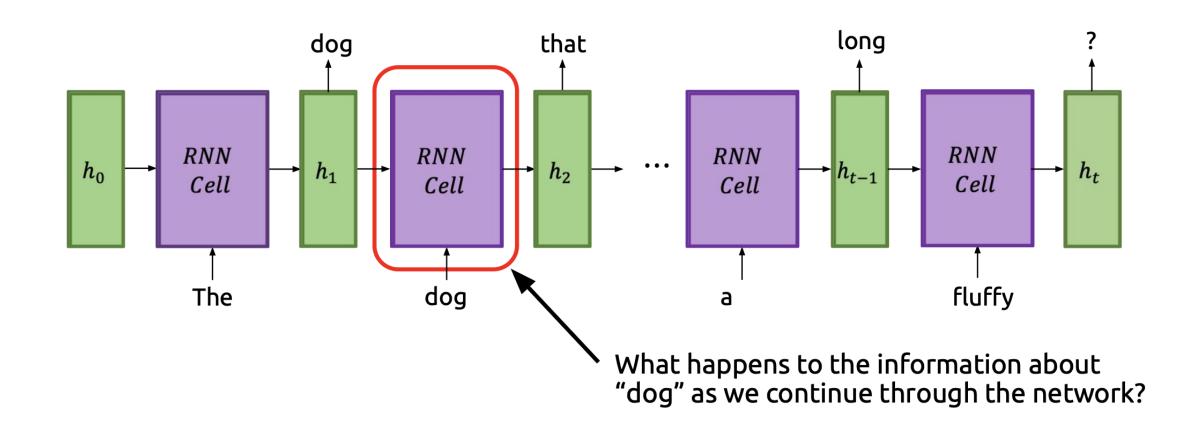
To predict "tail" RNN needs to remember the subject of the sentence
 "dog"

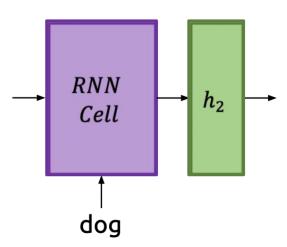
#### RNN Weaknesses

"The dog that my family had when I was a child had a fluffy

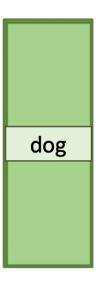
- To predict "tail" RNN needs to remember the subject of the sentence
   "dog"
- "dog" and predicted word are separated by 12 words
  - On the outer limit of what a vanilla RNN would be able to remember.



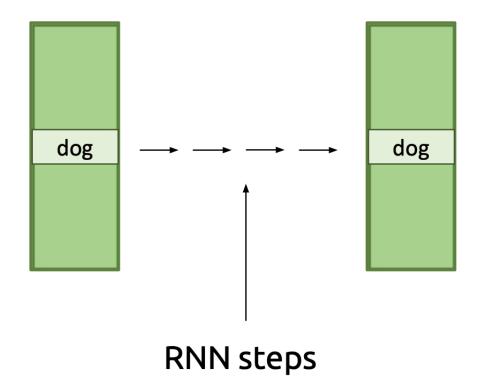




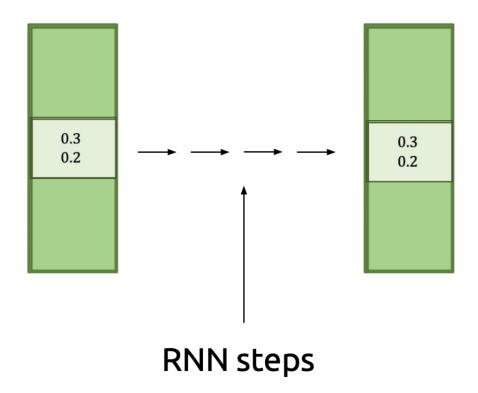
Can imagine that the information about "dog" is stored in some part of the RNN's hidden state vector



Through all subsequent RNN steps, we want "dog" to stay the same



If we think of "dog" as just a few entries in the vector...



...to preserve "dog", we need to compute the identity function over

the part of the vector that stores it

But will that happen?

No

Why?

$$\begin{array}{c}
0.3 \\
0.2
\end{array}$$

$$\begin{array}{c}
0.3 \\
0.2
\end{array}$$

RNN steps

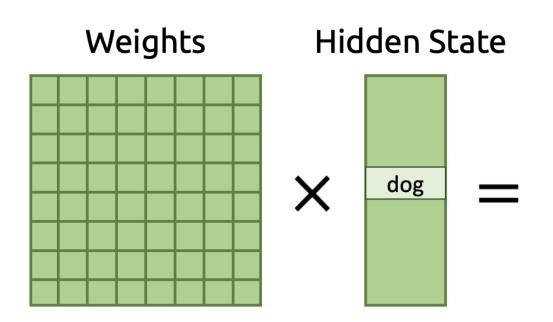
#### How does this affect the hidden state?

RNN update

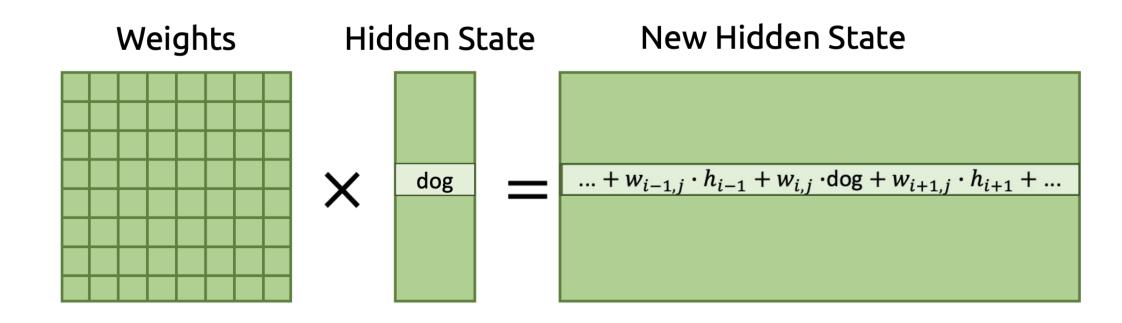
$$h_t = \rho((e_t, h_{t-1})W_r + b_r)$$

The hidden state goes through a fully connected layer!

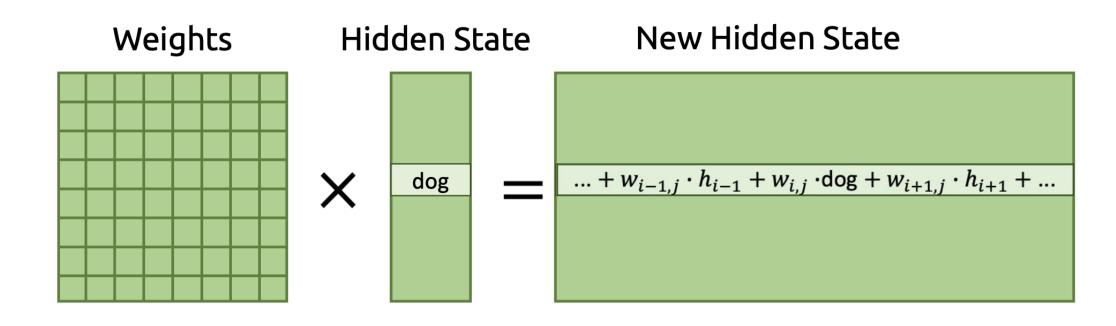
 What will happen to our dog after we multiply our weights by our hidden state?



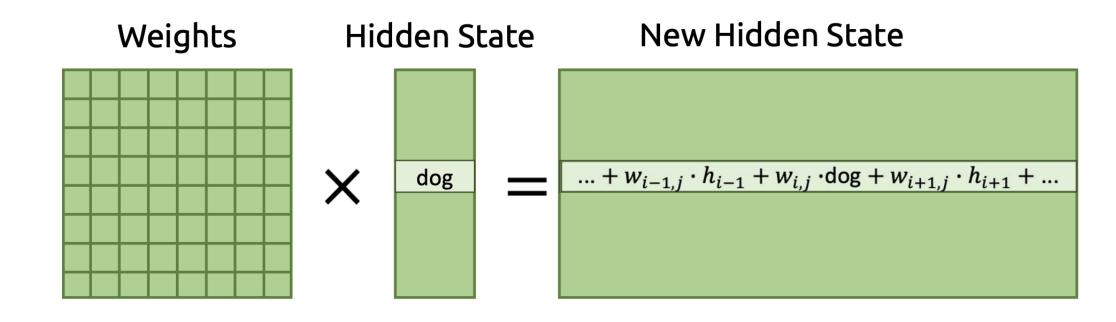
 What will happen to our dog after we multiply our weights by our hidden state?



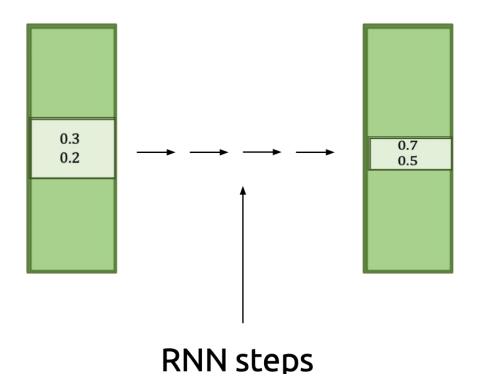
Dog gets lost in all the other information!



Dog gets lost in all the other information!



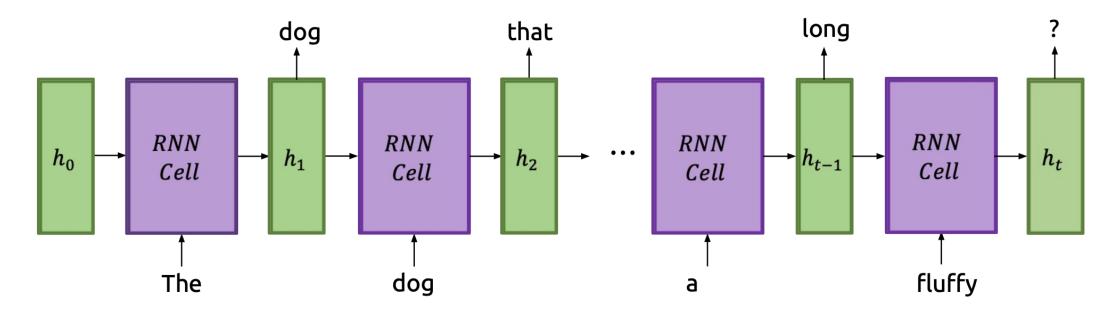
 "dog" in hidden state gets combined and mixed with rest of hidden state



RNN forgets about the dog after a certain time

#### Any questions?

# RNNs cannot learn "long term" dependency

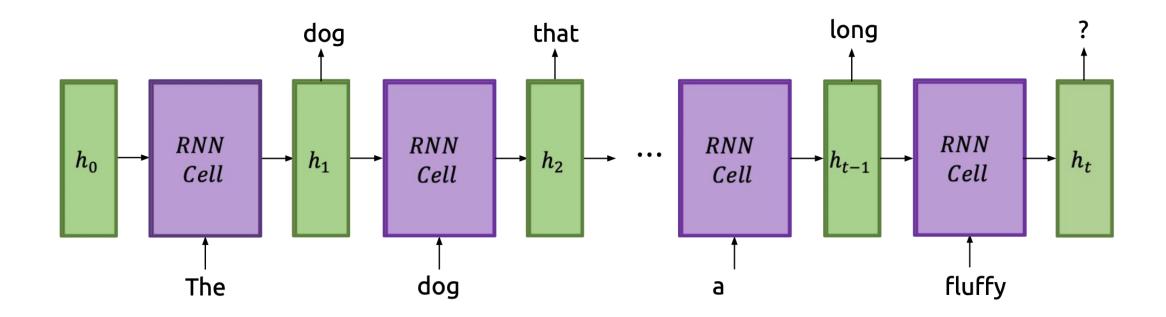


We need new way to update hidden state!

How?

### An analogy to human (or computer) memory:

- RNN hidden state → "short term memory/RAM"
  - Like how you lose contents of RAM if you shut down a computer...
  - ...or how human short-term memory fades after time

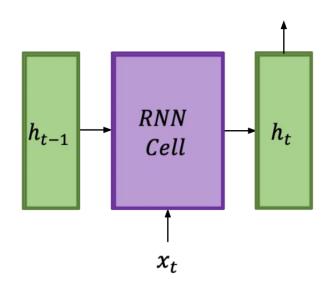


### An analogy to human (or computer) memory:

- RNN hidden state → "short term memory/RAM"
  - Like how you lose contents of RAM if you shut down a computer...
  - ...or how human short-term memory fades after time
- What we want → "long term memory/disk"
  - Some state representing knowledge that persists
  - Like how contents of disk persist across shut-downs...
  - · ...or how sleep consolidates human memory into long-term memory
- <u>Long</u> Short Term Memory (LSTM)
  - "Short-term memory that persists over time"
  - i.e. "hidden states that remember information for longer"

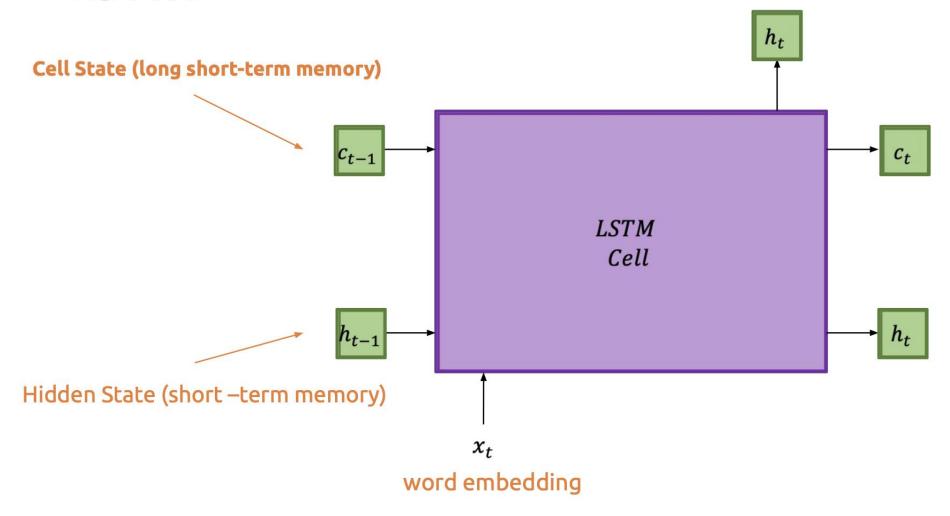
#### What is different?

#### Vanilla RNN



# **LSTM** $h_t$ **LSTM** Cell $x_t$

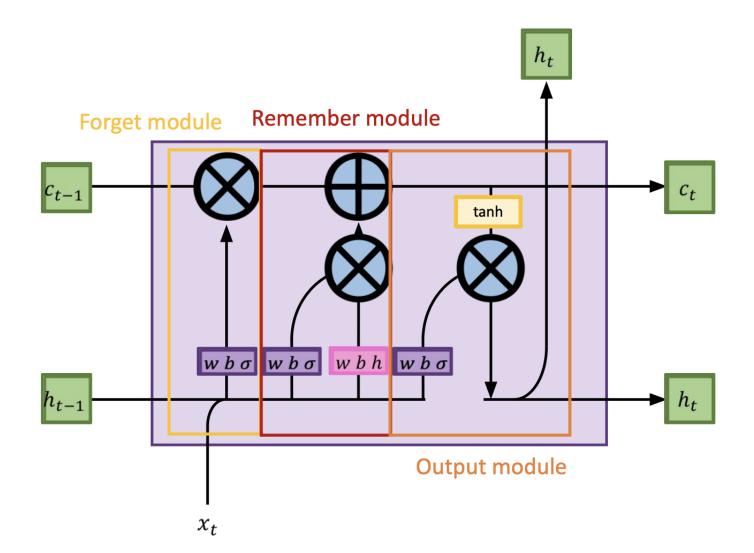
#### **LSTM**



#### How an LSTM works

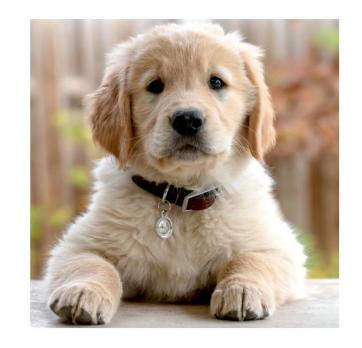
- An LSTM consists of 3 major modules:
  - Forget module
  - Remember module
  - Output module

# The Complete LSTM



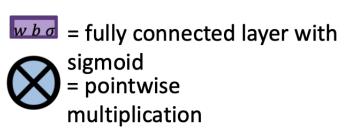
Say we just predicted "tail" in "My dog has a fluffy \_\_\_\_\_."

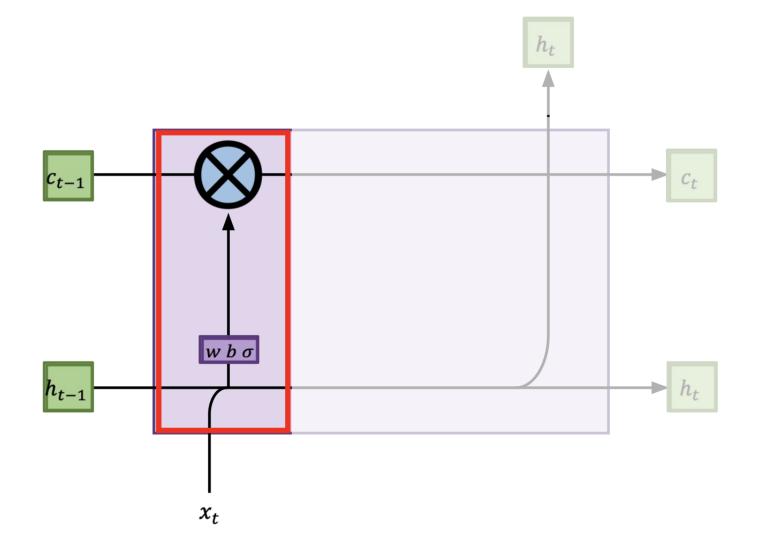
Next set of words: "I love my dog"



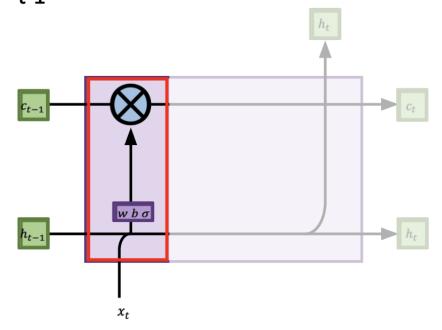
- Model no longer needs to know about "dog"
- Ready to **delete** information about subject





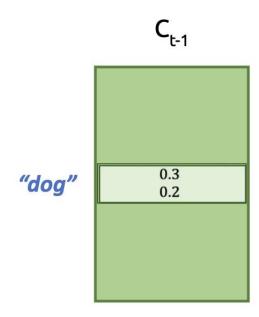


- Filters out what gets allowed into the LSTM cell from the last state
  - Example: If it's remembering gender pronouns, and a new subject is seen, it will forget the old gender pronouns
- Either lets parts of C<sub>t-1</sub> pass through or not



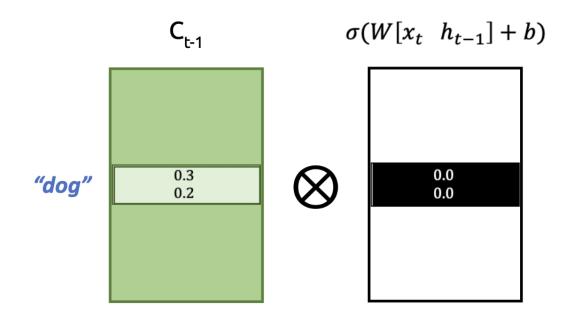
#### Forgetting information

- Use pointwise multiplication by a mask vector to forget information
  - What do we want to forget from last cell state?



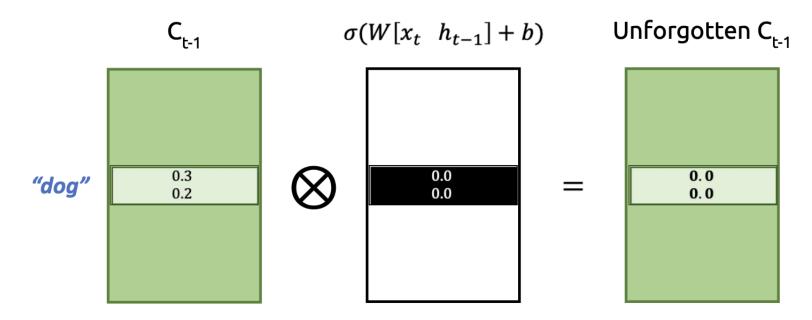
#### Forgetting information

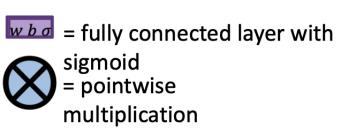
- Use pointwise multiplication by a mask vector to forget information
  - What do we want to forget from last cell state?
  - Output of fully connected + sigmoid is what we want to forget

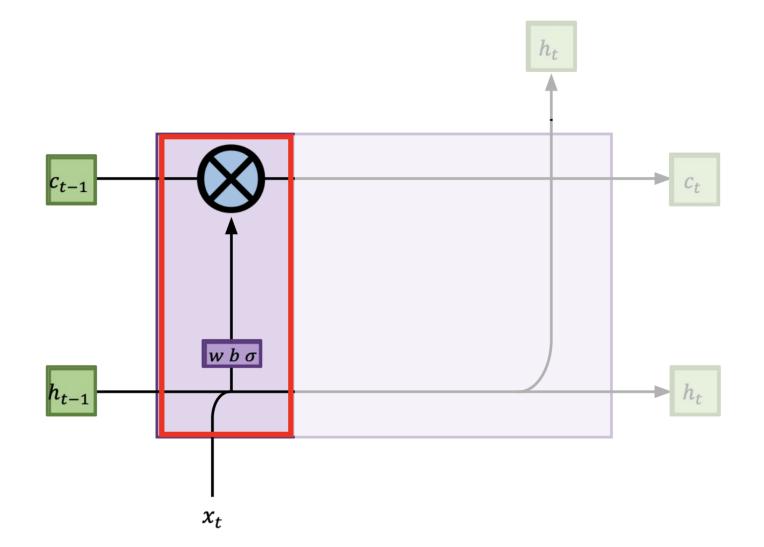


#### Forgetting information

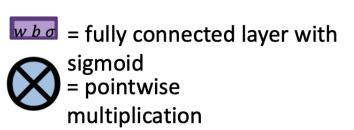
- Use pointwise multiplication by a mask vector to forget information
  - What do we want to forget from last cell state?
  - Output of fully connected + sigmoid is what we want to forget
  - "Zeros out" a part of the cell state
  - Pointwise multiplication by a learned mask vector is known as gating

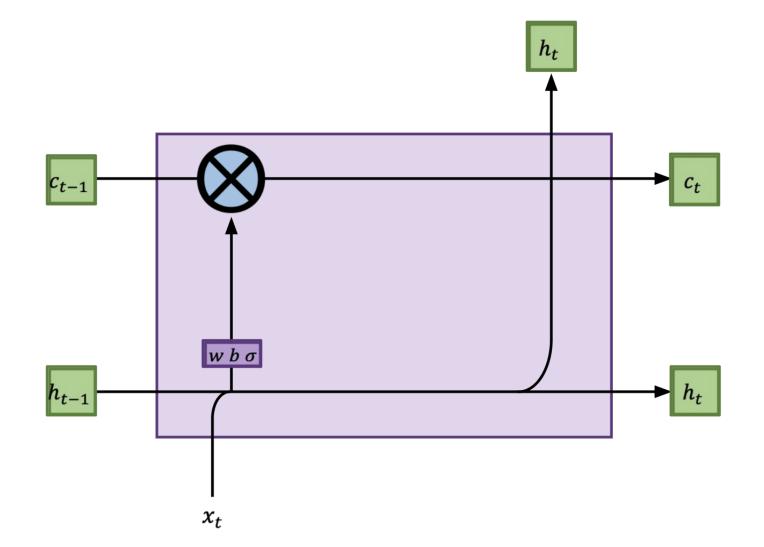






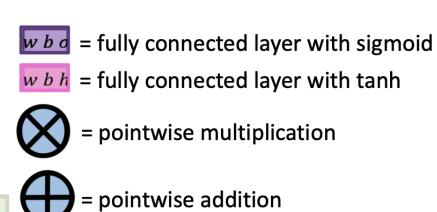
What's next?

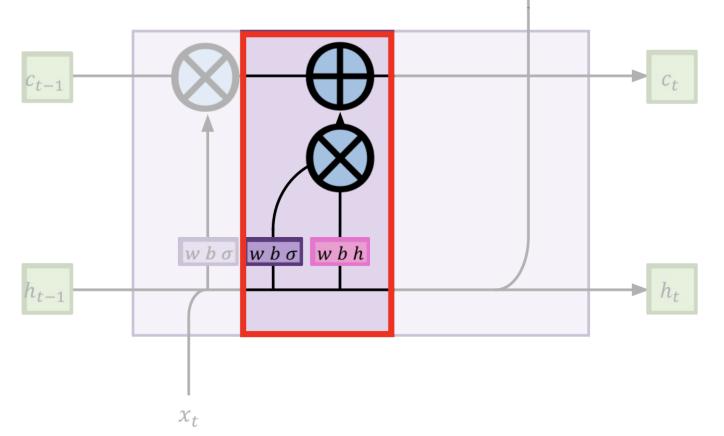




#### Remember Module

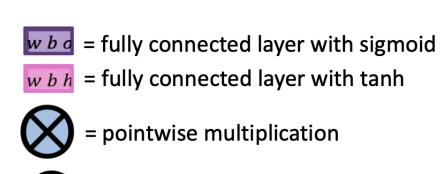
 We can save information that we want to remember by adding it into "empty" slots in the cell state



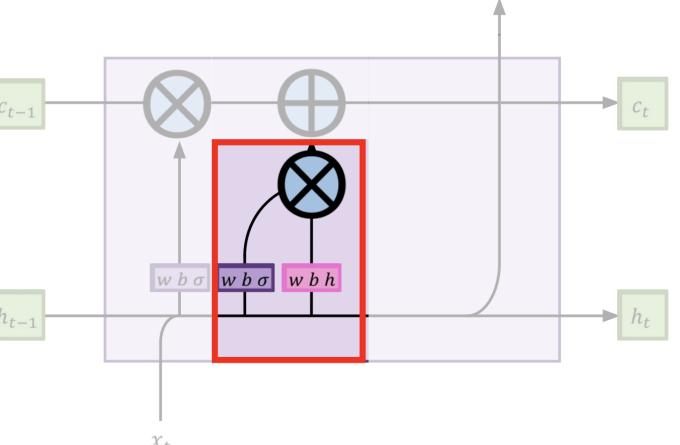


#### Remember Module

 First: use gating to decide what to remember

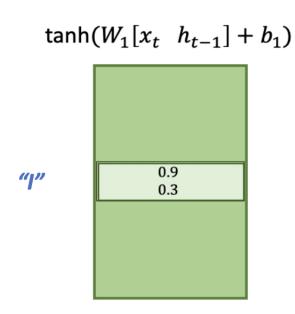


= pointwise addition



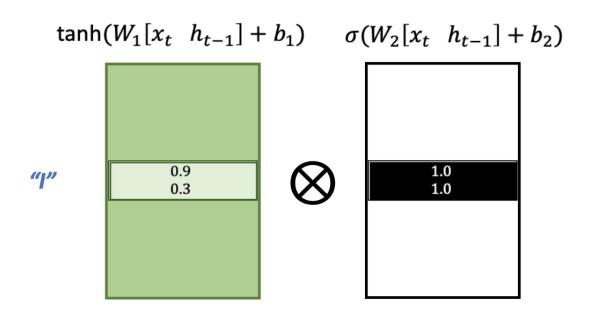
# Gating for 'selective memory'

 A fully-connected + tanh on [input, memory] computes some new memory



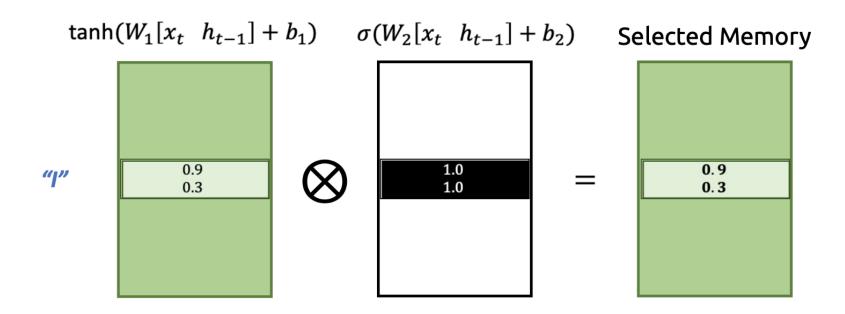
# Gating for 'selective memory'

- A fully-connected + tanh on [input, memory] computes some new memory
- We gate this memory to decide what bits of it we want to remember long-term in the cell state



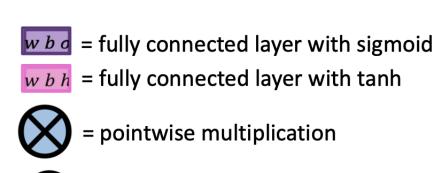
# Gating for 'selective memory'

- A fully-connected + tanh on [input, memory] computes some new memory
- We gate this memory to decide what bits of it we want to remember long-term in the cell state

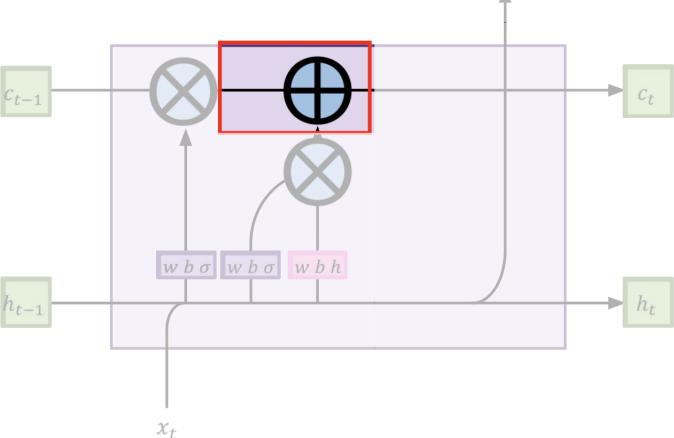


#### Remember Module

 Then: we add this selective memory into the cell state



= pointwise addition

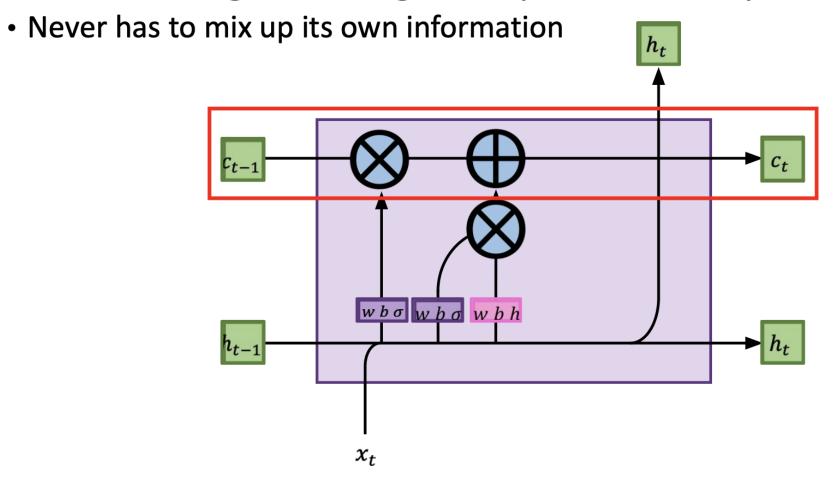


# Remembering information

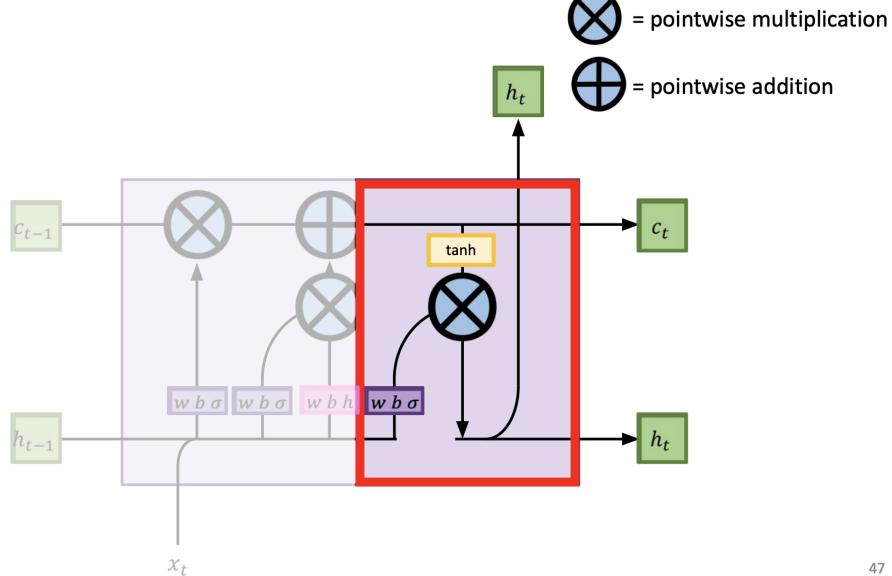
 Add what we <u>didn't forget</u> to what we <u>did remember</u> Unforgotten C<sub>1-1</sub> **Selected Memory** 0.0 0.9 0.9 + 0.0 0.3 0.3

### Why does this solve our problem?

Cell state never goes through a fully connected layer!



### **Output Module**



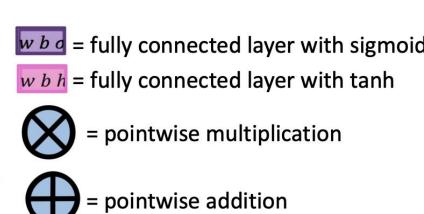
wbo = fully connected layer with sigmoid

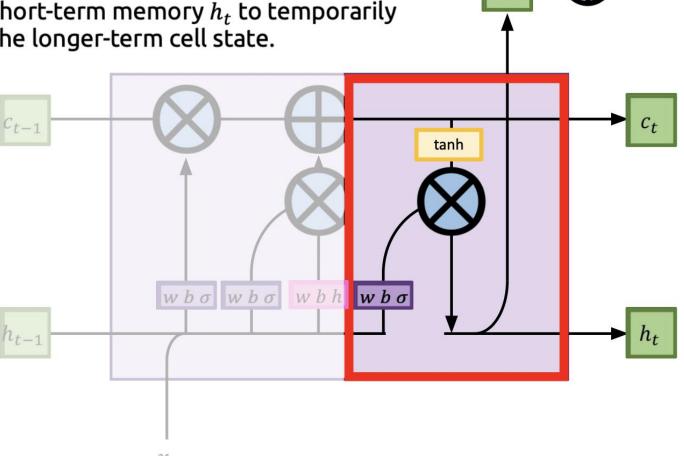
w b h = fully connected layer with tanh

#### Output Module

Same structure as the remember module

• Provides path for short-term memory  $h_t$  to temporarily acquire info from the longer-term cell state.





# The Complete LSTM



$$i_{t} = \sigma(W_{i}h_{t-1} + U_{i}x_{t} + b_{i})$$

$$f_{t} = \sigma(W_{f}h_{t-1} + U_{f}x_{t} + b_{f})$$

$$o_{t} = \sigma(W_{o}h_{t-1} + U_{o}x_{t} + b_{o})$$

$$\widetilde{c}_{t} = tanh(Wh_{t-1} + Ux_{t} + b)$$

$$c_{t} = f_{t} \circ c_{t-1} + i_{t} \circ \widetilde{c}_{t}$$

$$h_{t} = o_{t} \circ tanh(c_{t})$$

$$y_{t} = h_{t}$$

