CSCI11470 Deep I_ea rning

Eric Ewing

Day 18: Introduction to RNNSs

Wenesday,
3/5/25

Updates

* I’m not holding office hours today.

* No weekly quiz this week.

* I’ll sort out consequences for people who have come forward by

tomorrow.

* I’'ve responded to some people, but not everyone. If you’ve reached out
acknowledging your use of Al and haven’t sent your chat transcripts,
please send those. You’ll save me an email.

Collaboration

* Collaboration is encouraged and is great for learning

* Lots of people get help at hours and might have similar code if
they were discussing issues or getting the same help from TAs,
this is fine.

* But also... be aware that some students brought code to office
hours generated by Al that they couldn’t debug on their own...
* Becomes a little unclear what to do in cases of fruit from a poisonous tree

https://en.wikipedia.org/wiki/Fruit_of_the_poisonous_tree

Final Project

Groups of 3or4
Project: Go do some Deep Learning!

Option #1: Reimplement recent research paper

Option #2: Do something new (required for capstoning students)

Full project description, dates, and intermediate checkpoints:
https://hackmd.io/@BDLS25/ryoDyDmilg

https://hackmd.io/@BDLS25/ryoDyDmiJg

Final Project

Step 1: Form groups!

Groups of 3or4
Project: Go do some Deep Learning!

Option #1: Reimplement recent research paper

Option #2: Do something new (required for capstoning students)

Full project description, dates, and intermediate checkpoints:
https://hackmd.io/@BDLS25/ryoDyDmilg

https://hackmd.io/@BDLS25/ryoDyDmiJg

Using the Embedding Matrix in a Network

embedding sz

index lookups

_

embedding matrix

seq_len
vocab sz

Input: word
indices

seq_len

embedding_sz

Embedding of each
word in batch

Critical bit: the entries of this matrix can be learned!
The network learns what word embeddings are most effective for performing its task

Rest of
model...

Vector arithmetic in the embedding matrix

Demo here: https://turbomaze.github.io/word2vecjson/

morning

ni

breakfast

dinner

breakfast
o
dinner
>

49

More ‘semantic directions’ in embedding space

-
=
0 T woman
; 'Y
: @)
king ~.
-

b, e
/

Male-Female

E(queen) - E(king) =
E(woman) - E(man)

Semantic: relating to meaning in language

More ‘semantic directions’ in embedding space

man

8] \\‘* woman
@) O swam

“*. walking

‘/\queen_> /O\’

swimming

king

Male-Female Verb tense
E(queen) - E(king) = E(walked) - E(walking) =
E(woman) - E(man) E(swam) - E(swimming)

Semantic: relating to meaning in language

More ‘semantic directions’ in embedding space

Any questions?

sPain \

A Italy \Madrid
Germany . Rome
man walked Berlin
.. ‘ Turkey \
o “ee - woman Ankara
; *‘ O i Russia ——— 0
king . . Y e OttawaMoscow
A walking
ﬂ) /O\b R s Tokyo
/ swimming Vzi:;m Be}ilajl:z;
Male-Female Verb tense Country-Capital
E(queen) - E(king) = E(walked) - E(walking) = E(Spain) - E(Madrid)
E(woman) - E(man) E(swam) - E(swimming) E(Vietnam) - E(Hanoi)

Semantic: relating to meaning in language

52

Using the Embedding Matrix in a Network

embedding sz

index lookups

_

embedding matrix

seq_len
vocab sz

Input: word
indices

seq_len

embedding_sz

Embedding of each
word in batch

Critical bit: the entries of this matrix can be learned!
The network learns what word embeddings are most effective for performing its task

Rest of
model...

Using the Embedding Matrix in a Network

Say in the middle of training, the model sees: Then the model sees a lot of “danced gleefully”
P(“happily”’|’"They Danced”) = High
P(“gleefully”’|’"They Danced”) = Low

: embedding sz
embedding_sz
o index lookups 2 b3 Rest of
o SRSl embedding matrix - ¢ | Embeddingofeach | _ esto
@) .
g > word in batch model...
b
Inp.ut:.word Critical bit: the entries of this matrix can be learned!
indices

The network learns what word embeddings are most effective for performing its task

Using the Embedding Matrix in a Network

Say in the middle of training, the model sees: Then the model sees a lot of “danced gleefully”
P(“happily”’|’"They Danced”) = High
P(“gleefully”’|’"They Danced”) = Low

How do we modify the embedding of “gleefully” so that it
is similar to “happily”?

4 embedding_sz
embedding_sz
c . >
@ index lookups " L
) —— g of each Rest of
Q .
v = word in batch model...
b
Input: word s " i Sk b
e Critical bit: the entries of this matrix can be learned!
indices

The network learns what word embeddings are most effective for performing its task

Using the Embedding Matrix in a Network

Say in the middle of training, the model sees: Then the model sees a lot of “danced gleefully”
P(“happily”’|’"They Danced”) = High
P(“gleefully”’|’"They Danced”) = Low

How do we modify the embedding of “gleefully” so that it
is similar to “happily”?

4 embedding_sz
embedding_sz
~) N o
T index lookups “ Context Based Learning! L
) —— g of each Rest of
T, A -
? S word in batch model...
b
Input: word s " i Sk b
e Critical bit: the entries of this matrix can be learned!
indices

The network learns what word embeddings are most effective for performing its task

Quantifying “similarity”

A-B i=1A;iB;
AlllIBIl
MAlB [z, a2 [ze, 5

cosine similarity = cos(6) =

happily

gleefully

/ "9 cos(0°) =1
' cos(90°) = -0.448
> cos(180°) = -0.598

56

Limitations of the context-based approach

. Context is correlated with meaning, but context != meaning

. Synonyms typically have similar context:
. P(*“happily” | “they danced”)
. P(“gleefully” | “they danced”)
. ...but often antonyms do, too:
- P(“happily” | “they danced”)
- P(*“unwillingly” | “they danced”)
- “happily” and “unwillingly” might be used in similar contexts, but

have the opposite meaning ‘a language model might (erroneously)
give them similar embeddings

Other failure modes are even more dire

What happens when your dataset reflects historical / societal biases?

Other failure modes are even more dire

What happens when your dataset reflects historical / societal biases?
Google News word2vec:
- Large set of pretrained word embeddings, published 2013

- Dataset: news articles aggregated by Google News (100 billion
words)

Other failure modes are even more dire

What happens when your dataset reflects historical / societal biases?

Google News word2vec:
- Large set of pretrained word embeddings, published 2013

- Dataset: news articles aggregated by Google News (100 billion
words)

What kinds of relationships do these embeddings contain?

Google News word2vec

010 Distance to the word: criminal
' P Distance

- I | | I I I I
0.00

Darnell Trevon DeShawn Mike Conner Jake Matt

o o
o o
(o)} co

Cosine Similarity
=
o
o

http://www.mattkenney.me/google-word

— ri

Google News word2vec

- Why did this happen?
- The training dataset (news articles) was biased.

- The news cycle over-represents crimes by black perpetrators
- (Entman 94, Gilliam et.al. 96, Dixon 08, Dixon 15) — this is true over time as well

- Viewers respond more strongly to news stories about crimes by black

perpetrators.
- (Dixon and Maddox 06, Dixon and Azocar 07, Hurley et.al. 15)

- (News outlets optimize For clicks, therefore report crime by black
people more)

http://www.mattkenney.me/google-word

AL OI’EFITH S
OPPRESSICN

HOW SEARCH ENGINES
REINFORCE RACISM

SAFIYA UMOJA NOBLE

*In ~2010, when Noble started working
on this book, these were the real
Google autocomplete suggestions

* Takeaway: language models
reproduce the biases of the data on
which they are trained

e ...unless special care is taken—we have an
upcoming lab on this!

Limitations of the N-gram model

* What issues do we run into using feed-forward N-gram models?

Size of Feed Forward bigram Model

Let's look at bigram model and count the number of
weights.

inputs

prediction

“Th e ”

“dog”

“dog”

“barked”

“barked”

“loudly”

“Th e ”

113 c at”

113

cat

”

“meowed”

“meowed”

“s Oﬁly ”

Size of Feed Forward bigram Model

To preform embedding lookup on our entire batch, we just need one
embedding matrix of size: (vocab sz, embedding sz)

inputs

“The ”

“dog”

“barked”

“The »

(13 C at”

“meowed”

\i

A 4

Embedding
Lookup

embedding sz

| Embedding of each

word in batch

batch_sz

Size of Feed Forward bigram Model

What size do we need the linear layer to be in order to map:
(batch_sz, embedding_sz) x (???, ???) — (batch_sz, vocab_sz)

2??
embedding_sz vocab_sz

batch sz

batch sz

Size of Feed Forward bigram Model

What size do we need the linear layer to be in order to map:
(batch_sz, embedding sz) x (???, ???) — (batch_sz, vocab_sz)

vocab_sz

embedding_sz vocab_sz

batch_sz
embedding_sz

batch sz

Size of Feed Forward N-gram Model

So what happens in the N-gram case?

inputs
“Th e ”n 13 at”
“dog ” “the”
“barked” “cars”
“The” “all” "
6 C at” “th e ”n
“meowed” “furniture”

\

J

f

(N-1) words

Embedding
Lookup +
Concat

4

prediction

Y

Probability of
each next word
given previous

“th e”

“ca,rsﬂ

& ”

on

“th e”

[“furnitur

”
[4

“in ”

Size of Feed Forward N-gram Model

Embedding lookup + Concatenation still requires only one
embedding matrix of size: (vocab sz, embedding sz)

inputs
“The” “at”
“dog” “the”
“barked” “cars”
“The” “all” "
“Cat” “the”
“meowed” “furniture”
\ Y J

(N-1) words

Embedding
Lookup +
Concat

(N-1) x embedding sz

\i

Concatenated embeddings of each
sequence of (N-1) words in the batch

batch sz

batch sz

Size of Feed Forward N-gram Model

But what happens to our feed forward layer?

222
(N-1) x embedding sz 2?3

vocab_sz

batch sz

Limitations of the N-gram model

* What issues do we run into using feed-forward N-gram models?

* Asthe size of N increases, the number of weights needed for the linear layer
becomes far too large.

Limitations of the N-gram model

* What issues do we run into using feed-forward N-gram models?

* Asthe size of N increases, the number of weights needed for the linear layer
becomes far too large.

* Using a fixed N creates problems with the flexibility of our model.

Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

For example, we can see that at some parts of the sentence below, smaller
N-gram models should be sufficient to make predictions:

“The dog barked at one of the cats.”

(“The”’ “dog” —
“barked”

15

Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of
words may make it impossible to have any idea what should come next.

“The dog barked at one of the cats.”

(é at”, (14 on e ”’ (14 Of,, “th e” —
227

16

Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of
words may make it impossible to have any idea what should come next.

“The dog barked at one of the cats.”

We want our model to recognize these patterns and dynamically adapt
how it makes a prediction based on context.

17

An\gjetséionqs?
Limitations of the N-gram model '

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the
linear layer becomes far too large.

2. Using a fixed N creates problems with the flexibility of our model.

We need a solution that is both computationally cheap and more
dynamic in terms of its memory of previously seen words.

18

New Approach

Let’s revisit the bigram model and see several iterations of prediction

using a bigram model:

“dog”

A

Bigram
Model

“Th e ”

“was”

“barking”

A

Bigram
Model

Bigram
Model

”n

“dog

“w as ”

19

New Approach

Ideally, we would like to be able to keep “memory” of what

words occurred in the past.

“dog”
A

Any ideas?

“was”

“barking”

Bigram
Model

4

1

Bigram
Model

Bigram
Model

“Th e ”

”

“dog

1 ”

was

20

New Approach

What if we sequentially passed information from our previous

bigram block into our next block?

“dog”
A

Bigram
Model

+

“Th e ”

“was,?

Bigram
Model

”

“dog

“barking”

4

Bigram
Model

1 ”

was

21

New Approach

If we follow the information flow, we see that when predicting

“barking”, we have some way of knowing that “dog” was
previously observed:

“dog”
A

Bigram
Model

“was”

“Th e ”

Bigram
Model

“barking”

A

”n

“dog

Bigram
Model

——————————

(13 ”n

was

22

New Approach

In fact, we even have a way of knowing that “The” was

observed!

“dog”

|

“Th e ”

was

“barking”

“dog

”

was

23

New Approach

We can represent this relationship using
only one bigram block and connection that
feeds from the output of the model back
into the input.

We call this connection a recurrent
connection.

We call the previous representation the
“unrolled” representation.

prediction

Bigram
Model

input

Different views of recurrent models

Recurrent view

prediction

A

Bigram
Model

input

“dog”

Bigram
Model

- e o e mm mm m mm m w

“The n

Unrolled view

“was ”

Bigram
Model

“dog”

“barking”

L

Bigram
Model

A

“was n

25

Recurrent Neural Network (RNN)

Recurrent Neural Networks are networks in the form of a directed
cyclic graph.

They pass previous state information from previous computations to
the next.

They can be used to process sequence data with relatively low model
complexity when compared to feed forward models.

The block of computation that feeds its own output into its input is
called the RNN cell.

Let’s see how we can build one!

. state for (“the”)
RNN Cell Architecture

RNN at time t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

Previous State s_

Embedding of word x.

!

“dog

» 27

state for (“the”)

RNN Cell Architecture

RNN at time t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

We then concatenate the
embedding and state vectors.

Embedding of word x Previous State s_

” 28

“dog

RNN Cell Architecture

RNN at time t
At each step of our RNN, we
will get an input word, and a Current State s,
state vector from the previous *
cell.

FC

We then concatenate the s
embedding and state vectors.
We use a fully connected layer
to compute the next state Embedding of word x, Previous State s_

”

“dog

RNN Cell Architecture

“wasﬂ

T RNN at time t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

We then concatenate the
embedding and state vectors.

We use a fully connected layer
to compute the next state

Output o,

T

FC_

Current State S,

A

FC,

Embedding of word x

Previous State s_,

We use another connected
layer to get the output.

“dog

”

RNN Cell Architecture

T RNN at time t

We can represent the
RNN in with the
following equations:

St = p((et,st-l)m + b;)

O = cT(SI:I/VO + bo)

Output o,

T

FC_

Current State S,

A

FC,

Embedding of word x

Previous State s_,

T

31

RNN Cell Architecture

T RNN at time t

We can represent the
RNN in with the
following equations:

St = p((etrSt—l)VVr + b;)

O = cT(St:I/Vo + bo)

Any questions?

n?9

Output o,

T

FC_

Current State S,

A

FC,

Embedding of word x

Previous State s_,

-'
G

T

32

RNN Cell Architecture

We can represent the
RNN in with the This brings up an immediate question: what is s ?

following equations:
Typically, we initialize sy to be a vector of zeros

St = p((et, St_1)VVr + b,) (i.e. “initially, there is no memory of any previous
words”)

oy = o(seW, + b,)

33

Training RNNs

We can calculate the cross entropy loss just as before since for any
sequence of input words (X, X,,..., xt), we know the true next
word X, ,

0'1 of of: \
| RNN J/ RNN | | RNN Loss(o0., X
o Cell Cell **° Cell (00, Xy\)
X X X

Training RNNSs

But what happens when we differentiate the loss and backpropagate?

N

O

o)
S -0SS (0¢s Xeyn)

35

Training RNNs

Not only do our gradients for o_depend on X, but also on all of the
previous inputs.
We call this backpropagation through time.

0[1 of (1: \
| RNN | RNN | RNN % loss(o.. X
Se Cell Cell ¢ o+ 4 Cell SW (t) t+1)
X X)(t

36

Tra i n i n g R N N S But at what point do we stop and calculate the loss/update?

With this architecture, we can run the RNN cell for as many steps as we
want, constantly accumulating memory in the state vector.

oll OIZ 0.0, 000
< __| RNN | RNN RNN
e Cell Cell Cell >

X X X

1 2 10,000

37

Training RNNs

Solution: We define a new hyperparameter called window sz.
We now chop our corpus into sequences of words of size window_sz

The new shape of our data should be:
(batch sz, window sz, embedding sz)

Each example in our batch is a “window” of window sz many words.
Since each word is represented as an embedding sz, thatis the last
dimension of the data.

Training RNNs

Now that every example is a window or words, we can run the RNN till

the end of that window, and compute the loss for that specific window
and update our weights

o]1 of owindow_s z-1
< RNN | RNN L RNN
0 Cell Cell Cell

X X

1 2 window_sz-1

model?

1. Number of of weights not dependent on N

2. State gives flexibility to choose context
from near or far

“The dog was barking at one of the cats.”

prediction

RNN cell

Any questions?

Does RNN fix the limitations of the N-gram ??

“dog”
4

RNN
cell

“wa’s”

“barking”

“The”

RNN
cell

RNN
cell

“dog”

“was”

input

40

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops:

prev_state = Zero vector

for 1 from @ to window sz:
state_and _input = concat(inputs[i], prev_state)
current_state = fc _state(state and input)
outputs[i] = fc_output(current_state)
prev_state = current_state

return outputs

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

N\

The size of our output vectors

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

b

The activation function to be used in the FC
layers inside of the RNN Cell

RNNs in Tensorflow

Any intuition why we would want
return_sequences to be TRUE?

RNNSs can be built from scratch using Python for loops.

There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

RNN
Cell

RNN
Cell

I

owindow_sz—l

|

RNN
Cell

Jnindow_sz-l

p,

If True: calling the RNN on an input sequence
returns the whole sequence of outputs + final
state output

If False: calling the RNN on an input sequence
returns just the final state output (Default)

45

RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

Usage:
RNN = SimpleRNN(10) # RNN with 10-dimensional output vectors
Final output = RNN(inputs) # inputs: a [batch sz, seq length, embedding sz]| tensor

46

	Slide 1
	Slide 2: Updates
	Slide 3: Collaboration
	Slide 4: Final Project
	Slide 5: Final Project
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Limitations of the N-gram model
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Limitations of the N-gram model
	Slide 33: Limitations of the N-gram model
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

