CSCI 1470

Eric Ewing

Monday, 3/3/25

Deep Learning

Day 17: Language Modelling and NLP

Beras Recap

Beras Recap

The good news:

Scores were very high (Better than MP 1)

Beras Recap

The good news:

Scores were very high (Better than MP 1)

The bad news:

There are a large number of academic code violations (e.g., copying and pasting code from AI or other people)

From the course Missive

Academic Integrity and Collaboration Policy

Academic dishonesty will not be tolerated. This includes cheating, lying about course matters, plagiarism, or helping others commit a violation. Plagiarism includes reproducing the words of others without both the use of quotation marks and citation. Students are reminded of the obligations and expectations associated with the Brown Academic and Student Conduct Codes.

From the course Missive

Academic Integrity and Collaboration Policy

Academic dishonesty will not be tolerated. This includes cheating, lying about course matters, plagiarism, or helping others commit a violation. Plagiarism includes reproducing the words of others without both the use of quotation marks and citation. Students are reminded of the obligations and expectations associated with the Brown Academic and Student Conduct Codes.

You either:

- 1. Shared code
- 2. Both used same outside source (e.g., ChatGPT)

From the course Missive

Academic Integrity and Collaboration Policy

Academic dishonesty will not be tolerated. This includes cheating, lying about course matters, plagiarism, or helping others commit a violation. Plagiarism includes reproducing the words of others without both the use of quotation marks and citation. Students are reminded of the obligations and expectations associated with the Brown Academic and Student Conduct Codes.

You either:

- 1. Shared code
- 2. Both used same outside source (e.g., ChatGPT)

We're looking specifically at the more complex functions (e.g., gradient_tape)

(you don't need to worry that one_hot is the same as someone else's)

From the course Missive

Academic Integrity and Collaboration Policy

Academic dishonesty will not be tolerated. This includes cheating, lying about course matters, plagiarism, or helping others commit a violation. Plagiarism includes reproducing the words of others without both the use of quotation marks and citation. Students are reminded of the obligations and expectations associated with the Brown Academic and Student Conduct Codes.

You either:

- 1. Shared code
- 2. Both used same outside source (e.g., ChatGPT)

We're looking specifically at the more complex functions (e.g., gradient_tape)

(you don't need to worry that one_hot is the same as someone else's)

From the course Missive

Academic Integrity and Collaboration Policy

Academic dishonesty will not be tolerated. This includes cheating, lying about course matters, plagiarism, or helping others commit a violation. Plagiarism includes reproducing the words of others without both the use of quotation marks and citation. Students are reminded of the obligations and expectations associated with the Brown Academic and Student Conduct Codes.

Discussion of course material with your classmates is both permitted and encouraged. However, showing, copying, or other sharing of actual code or verbatim answers to written questions is forbidden. This includes publishing projects on Github or any other public platform.

If you use outside sources they must be cited. If you used AI, you need to include transcripts.

You either:

- 1. Shared code
- 2. Both used same outside source (e.g., ChatGPT)

We're looking specifically at the more complex functions (e.g., gradient_tape)

(you don't need to worry that one_hot is the same as someone else's)

If you use outside sources they must be cited. If you used AI, you need to include transcripts. From the course Missive

Academic Integrity and Collaboration Policy

Academic dishonesty will not be tolerated. This includes cheating, lying about course matters, plagiarism, or helping others commit a violation. Plagiarism includes reproducing the words of others without both the use of quotation marks and citation. Students are reminded of the obligations and expectations associated with the Brown Academic and Student Conduct Codes.

Discussion of course material with your classmates is both permitted and encouraged. However, showing, copying, or other sharing of actual code or verbatim answers to written questions is forbidden. This includes publishing projects on Github or any other public platform.

If you are think you have violated this policy, send me an email by Wednesday, 3/5.

After Wednesday, we will reach out to students with suspicious or concerning submissions.

You either:

- 1. Shared code
- 2. Both used same outside source (e.g., ChatGPT)

We're looking specifically at the more complex functions (e.g., gradient_tape)

(you don't need to worry that one_hot is the same as someone else's)

If you use outside sources they must be cited. If you used AI, you need to include transcripts. From the course Missive

Academic Integrity and Collaboration Policy

Academic dishonesty will not be tolerated. This includes cheating, lying about course matters, plagiarism, or helping others commit a violation. Plagiarism includes reproducing the words of others without both the use of quotation marks and citation. Students are reminded of the obligations and expectations associated with the Brown Academic and Student Conduct Codes.

Discussion of course material with your classmates is both permitted and encouraged. However, showing, copying, or other sharing of actual code or verbatim answers to written questions is forbidden. This includes publishing projects on Github or any other public platform.

If you are think you have violated this policy, send me an email by Wednesday, 3/5.

After Wednesday, we will reach out to students with suspicious or concerning submissions.

We use more than just your final submission for evidence.

New data type: sequences

- Stock market

New data type: sequences

What is the data property here that we could leverage?

- Stock market

Natural Language

"language that has developed naturally in use"

Natural Language

"language that has developed naturally in use"

Compare to constructed or formal language

- -code: for i in range(50):
- -math: 52 + 94 = 147
- -logic: A ^ B -> C (if A and B, then C)

Natural Language

In this class: sequence of words

"They went to the grocery store and bought bread, peanut butter, and jam."

Example of prediction?

Input: X

burrito

Output: Y

No quiero crema agrea en mi burrito

Example of classification?

Input: X "The story telling was erratic and, at times, slow" Function: f "Loved the diverse cast of this movie" Output: Y "Good review?" V Coutput: Y "Good review?" Coutput: Y "Coutput: Y

Example of prediction?

"They went to the grocery store and bought... bread? milk? rock?

Generating artificial sentences: Here each word is a discrete unit; predicting the next part of the sequence means predicting words

Language models

Definition: Probability distribution over strings in a language.

Exponentially-many strings means each string has very low probability

Relative probabilities are meaningful:

P("they went to the store") >> P("butter dancing rock")

Language models logic: leverage sentence structure

P(any sequence) is determined by P(the words in the sequence).

Language models logic: leverage sentence structure

P(any sequence) is determined by P(the words in the sequence).

Said differently, we can represent a sequence as $w_1, w_2, ..., w_n$, and $P(w_1, w_2, ..., w_n) = P(w_1) * P(w_2|w_1) * P(w_3|w_1, w_2) * ... P(w_n|w_1 ..., w_{n-1})$

Language models logic: leverage sentence structure

P(any sequence) is determined by P(the words in the sequence).

Said differently, we can represent a sequence as $w_1, w_2, ..., w_n$, and $P(w_1, w_2, ..., w_n) = P(w_1) * P(w_2|w_1) * P(w_3|w_1, w_2) * ... P(w_n|w_1 ..., w_{n-1})$

P("they went to the store") = P("they")*P("went"|"they")*P("to"|"they went")* ...

"The probability of a sentence is the product of the probabilities of each word given the previous words" This is an application of the **chain rule for probabilities**

Language models: weird & cool!

Model trained on the King James Bible, Structure and Interpretation of Computer Programs, and some of Eric S. Raymond's writings:

- The righteous shall inherit the land, and leave it for an inheritance unto the children of Gad according to the number of steps that is linear in b.
- •And this I pray, that your love may abound yet more and more like a controlled use of shared memory.

Any questions?

(King James Programming)

https://kingjamesprogramming.tumblr.com/

Discriminitive models learn conditional probabilities P(Y|X = x)

Discriminitive models learn conditional probabilities P(Y|X = x)Given some features, what is the probability of a label?

Discriminitive models learn conditional probabilities P(Y|X = x)Given some features, what is the probability of a label?

Generative models learn joint probabilities P(X, Y)

Discriminitive models learn conditional probabilities P(Y|X = x)Given some features, what is the probability of a label?

Generative models learn joint probabilities P(X, Y)models how a signal was generated

Language models: the math

At each step, we look at a probability distribution for what the *next* word might be.

They went to the grocery store and bought ..

P(next_word | They went to the grocery store and bought)

Language models: the math

At each step, we look at a probability distribution for what the *next* word might be.

They went to the grocery store and bought ..

P(next_word | They went to the grocery store and bought)

Natural language: tokenization

"They went to the grocery store and bought bread, peanut butter, and jam."

["they", "went", "to", "the", "grocery", "store", "and", "bought", "bread", "peanut", "butter", "and", "jam"]

Natural language: tokenization

"They went to the grocery store and bought bread, peanut butter, and jam."

- Consistent casing
- Strip punctuation
- One word is one token
- Split on spaces

["they", "went", "to", "the", "grocery", "store", "and", "bought", "bread", "peanut", "butter", "and", "jam"]

Aside: Tokenization itself can be challenging...

- A lot easier in English than other languages (e.g. Chinese)
 - Chinese is character-based; words & phrases have different character lengths
 - No spaces

Language models: the math

At each step, we look at a probability distribution for what the *next* word might be.

They went to the grocery store and bought ..

P(next_word | They went to the grocery store and bought)
Language models: the math

How do we know which words to calculate probabilities for?

At each step, we look at a probability distribution for what the *next* word might be.

They went to the grocery store and bought ..

P(next_word | They went to the grocery store and bought)

Vocabularies: Defining a finite set of words

Vocabularies: the set of all words "known" to the model

Why?

- We need a finite set of words in order to define a discrete distribution over it.

Vocabularies: Defining a finite set of words

Vocabularies: the set of all words "known" to the model

Why?

- We need a finite set of words in order to define a discrete distribution over it. How?

- Choose a hyperparameter vocab_size for how many words the model should know
- Keep only the vocab_size with most frequent words replace everything else with "UNK"

- Original sentence:
 - "They galloped to the Ratty for dinner, and ate exactly seventy-three waffle fries and chocolate peamilk."

- Original sentence:
 - "They galloped to the Ratty for dinner, and ate exactly seventy-three waffle fries and chocolate peamilk."
- Tokenized:
 - ["they", "galloped", "to", "the", "ratty", "for", "dinner", "and", "ate", "exactly", "seventy-three", "waffle", "fries", "and", "chocolate", "peamilk"]

- Original sentence:
 - "They galloped to the Ratty for dinner, and ate exactly seventy-three waffle fries and chocolate peamilk."
- Tokenized:
 - ["they", "galloped", "to", "the", "ratty", "for", "dinner", "and", "ate", "exactly", "seventy-three", "waffle", "fries", "and", "chocolate", "peamilk"]

- Original sentence:
 - "They galloped to the Ratty for dinner, and ate exactly seventy-three waffle fries and chocolate peamilk."
- Tokenized:
 - ["they", "galloped", "to", "the", "ratty", "for", "dinner", "and", "ate", "exactly", "seventy-three", "waffle", "fries", "and", "chocolate", "peamilk"]
- UNKed:
 - ["they", "UNK", "to", "the", "UNK", "for", "dinner", "and", "ate", "exactly", "UNK", "waffle", "fries", "and", "chocolate", "UNK"]

Language models: the math

At each step, we look at a probability distribution for what the *next* word might be.

They went to the grocery store and bought ..

P(next_word | They went to the grocery store and bought)

Language models: the math

How to calculate the probability for words in our vocabulary?

At each step, we look at a probability distribution for what the *next* word might be.

They went to the grocery store and bought ..

P(next_word | They went to the grocery store and bought)

- Goal: predict next word given a preceding sequence
 - $P(word_n | word_1, word_2, \dots, word_{n-1}) = \frac{Count(word_1, word_2, \dots, word_{n-1}, word_n)}{Count(word_1, word_2, \dots, word_{n-1})}$

- Goal: predict next word given a preceding sequence

- $P(word_n | word_1, word_2, \dots, word_{n-1}) = \frac{Count(word_1, word_2, \dots, word_{n-1}, word_n)}{Count(word_1, word_2, \dots, word_{n-1})}$

- Example task: predict the next word

- he danced _____

- Goal: predict next word given a preceding sequence
 - $P(word_n | word_1, word_2, ..., word_{n-1}) = \frac{Count(word_1, word_2, ..., word_{n-1}, word_n)}{Count(word_1, word_2, ..., word_{n-1})}$
- Example task: predict the next word
 - he danced ____
- Strategy: iterate through all words in vocabulary, and calculate

 $\frac{Count(he \ danced < word>)}{Count(he \ danced)} \ for \ each \ word$

- Our training sentences were:
 - "She danced happily"
 - "They sang beautifully"
 - "He danced energetically"
 - "He sang happily"
 - "She danced gracefully"
- "He danced ___"
- "He danced happily"

 $Count(he \ danced \ < word >)$

Count(he danced)

- Our training sentences were:
 - "She danced happily"
 - "They sang beautifully"
 - "He danced energetically"
 - "He sang happily"
 - "She danced gracefully"
- "He danced"

- "He danced happily" Has 0 probability

 $Count(he \ danced < word >)$

Count(he danced)

- Our training sentences were:
 - "She danced happily"
 - "They sang beautifully"
 - "He danced energetically"
 - "He sang happily"
 - "She danced gracefully"
- "He danced ___"

- "He danced happily" Has 0 probability

Count(he danced < word >)

Count(he danced)

Why doesn't this work?

- Our training sentences were:
 - "She danced happily"
 - "They sang beautifully"
 - "He danced energetically"
 - "He sang happily"
 - "She danced gracefully"
- "He danced ___"

- "He danced happily"

Has 0 probability

Count(he danced < word >)

Count(he danced)

Why doesn't this work?

This strategy depends on having instances of sentence prefixes.

LM implementation: N-gram counting

Improvement: N-gram model – only look at N words at a time

LM implementation: N-gram counting

Improvement: N-gram model – only look at N words at a time (in this case, **bi**grams look at **2** words at a time)

-"She danced happily" -"They sang beautifully" -"He danced energetically" -"He sang happily"

-"She danced gracefully"

LM implementation: N-gram counting

Improvement: N-gram model – only look at N words at a time (in this case, **bi**grams look at **2** words at a time)

-"danced happily"
-"sang beautifully"
-"danced energetically"
-"sang happily"
-"danced gracefully"

"He danced happily" now has 1/3 probability!

But what if the answer was "He danced beautifully"?

LM implementation

Problem: it's impossible for the training set to have *every possible valid* sequence of words!

Let's try to learn a better numerical representation

LM implementation

Problem: it's impossible for the training set to have *every possible valid* sequence of words!

Let's try to learn a better numerical representation

What is the simplest thing you can think of?

LM implementation: Simple approach

LM implementation: Simple approach

LM implementation

Problem: it's impossible for the training set to have *every possible valid* sequence of words!

Can we learn a better numerical representation which associates *related* words with one another?

: 2 0 1 3 0 4 they 1 1 0 2 \mathbf{O} danced vocab_sz 1 2 0 \mathbf{O} 0 3 sang 1 0 1 1 2 happily 1 1 0 4 gleefully 0 :

Any questions?

-2d matrix: vocab_sz x embedding_sz

-2d matrix: vocab_sz x embedding_sz

each word corresponds to an index, or word ID
hence the vocab_sz dimension

How to build this embedding matrix?

-2d matrix: vocab_sz
x embedding_sz

each word corresponds
 to an index, or word ID –
 hence the vocab_sz
 dimension

- embedding_sz is a hyperparameter

LM implementation: deep learning

Deep learning helps solve this!

We can learn an *embedding matrix* that associates *related* words with one another for solving a prediction task.

If you want to input a [batch of] words into a neural net, this is how: they, danced, happily

Let's look at the 0th word in this batch; its ID in the vocab is 2.

So we look at row 2 of the embedding matrix.

Using the Embedding Matrix in a Network We can then pull out this embedding so we can use it in the rest of the model!

What does the embedding matrix represent?

• Each row in the matrix can be viewed as a vector in vector space

What does the embedding matrix represent?

- Each row in the matrix can be viewed as a vector in vector space
- "Embedding": We're embedding a non-Euclidian entity [a word] into Euclidian space

3

1

Vocab size: 3 Embed size: 2

What does the embedding matrix represent?

- Each row in the matrix can be viewed as a vector in vector space
- "Embedding": We're **embedding** a non-Euclidian entity [a word] into Euclidian space
- Each row represents the "embedding" for a single word

What does the embedding matrix represent?

- Each row in the matrix can be viewed as a vector in vector space
- "Embedding": We're embedding a non-Euclidian entity [a word] into Euclidian space
- Each row represents the "embedding" for a single word
- This has pretty remarkable properties!

Vector arithmetic in the embedding matrix

Demo here: https://turbomaze.github.io/word2vecjson/

More 'semantic directions' in embedding space

Male-Female

E(queen) - E(king) ≈ E(woman) - E(man)

Semantic: relating to meaning in language

More 'semantic directions' in embedding space

Semantic: relating to meaning in language

More 'semantic directions' in embedding space

Semantic: relating to meaning in language

Madrid Rome

Ankara

Ottawa

Tokyo

Hanoi

Beijing

Berlin

Moscow

When the language model is trained, it's incentivized to put words with similar context near each other in the embedding space.

Say in the middle of training, the model sees: P(``happily"|"They Danced") = HighP(``gleefully"|"They Danced") = High Then the model sees a lot of "danced gleefully"

Let's say in the middle of training...

Then, the model sees a lot of "danced gleefully"

indicos

Let's say in the middle of training...

indices

Since probability is calculated based on the embedding matrix...

Quantifying "similarity"

•

$$cosine \ similarity = \cos(\theta) = \frac{A \cdot B}{||A||||B||} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Limitations of the context-based approach

- Context is correlated with meaning, but context != meaning
- Synonyms typically have similar context:
 - P("happily" | "they danced")
 - P("gleefully" | "they danced")

....but often antonyms do, too:

- P("happily" | "they danced")
- P("unwillingly" | "they danced")

 "happily" and "unwillingly" might be used in similar contexts, but have the *opposite* meaning

 a language model might (erroneously)
 give them similar embeddings

Other failure modes are even more dire

What happens when your dataset reflects historical / societal biases?

Other failure modes are even more dire

What happens when your dataset reflects historical / societal biases? Google News word2vec:

- Large set of *pretrained* word embeddings, published 2013
- Dataset: news articles aggregated by Google News (100 billion words)

Other failure modes are even more dire

What happens when your dataset reflects historical / societal biases? Google News word2vec:

- Large set of *pretrained* word embeddings, published 2013
- Dataset: news articles aggregated by Google News (100 billion words)

What kinds of relationships do these embeddings contain?

Google News word2vec

http://www.mattkenney.me/google-word

Google News word2vec

- Why did this happen? Distance to the word: criminal
 - The training dataset (news articles) was biased.

- The news cycle **over-represents** crimes by black perpetrators
 - (Entman 94, Gilliam et.al. 96, Dixon 08, Dixon 15) this is true over time as well
- Viewers respond more strongly to news stories about crimes by black perpetrators.
 - (Dixon and Maddox 06, Dixon and Azocar 07, Hurley et.al. 15)
 - (News outlets optimize for clicks, therefore report crime by black people more)

why are black women so

why are black women so **angry** why are black women so **loud** why are black women so **mean** why are black women so **attractive** why are black women so **lazy** why are black women so **annoying** why are black women so **confident** why are black women so **sassy** why are black women so **insecure**

ALGORITHMS OF OPPRESSION

HOW SEARCH ENGINES REINFORCE RACISM

SAFIYA UMOJA NOBLE

why are black women so

why are black women so **angry** why are black women so **loud** why are black women so **mean** why are black women so **attractive** why are black women so **lazy** why are black women so **annoying** why are black women so **confident** why are black women so **sassy** why are black women so **insecure**

- In ~2010, when Noble started working on this book, these were the real Google autocomplete suggestions
- Takeaway: language models reproduce the biases of the data on which they are trained
 - ...unless special care is taken—we have an upcoming lab on this!