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Logistics

• We will now allow up to 4 late days used for HW 2

















The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?
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Adversarial Learning

- Can we (or adversaries) break our deep learning models
- Adversarial Attack: Can we add a small amount of noise to an 

input that results in a misclassification?
- Data Poisoning: Can we insert data in the training dataset that 

corrupts the model’s training?
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• What do you think the objective of our adversary is?
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• Training Data?
• Our model? (Uh oh)

Most Commonly Studied
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Normal Training:
- Compute gradients wrt weights and biases
- Update via gradient descent

Adversarial Example:
- Compute gradients wrt input
- Update input via gradient ascent

Learning a transformation to 
an input



Attack Model

We do not expect to be able to withstand an attacker with unlimited 
power.
If attackers can add unlimited noise, they can just change the image 
entirely.



Threat Model

• We limit the power of the attacker
• Attacks must fall within some 𝐿𝑝-Ball of radius r

• 𝐿1-Ball: Sum of noise must be below r
• 𝐿2-Ball: Square root ( sum of squared noise for each pixel) must be below 

r
• 𝐿∞-Ball: Largest individual value of attack noise must be below r



https://medium.com/towards-data-science/know-your-enemy-7f7c5038bdf3

Gradient Ascent around 
an input sample

What happens if we hit the 
constraint and can’t keep 

following the gradient?



Constrained Optimization

• Projected Gradient Ascent (PGA):
• Run Gradient Ascent
• If noise goes outside of constraint set, project back into constraint set

(Picture is for minimization)

https://www.researchgate.net/publication/358122337_Adaptive_Model_for_Magnetic_Particle_Mapping_Using_Magnetoelectric_Sensors
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• Most models will never be under threat from 
adversarial attacks

• But doesn’t this tell us something new about our 
models?
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Fictional Character
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Why Adversarial Attacks Work

We assume our 
datasets are IID (Train 

set looks like validation 
set looks like test set)

Adversarial attacks 
change the distribution 

of the test set

Performance on training 
set/validation set is no 
longer indicative of test 

performance



What did we learn in the first place?

If such small noise can change the outputs of our network, it clearly 
is not making decisions in the way that humans do.
It isn’t always making decisions about stop signs based on color, 
shape, or text…

YieldStop Sign



What did we learn in the first place?

Deep learning learns the “easiest” good representation, which can 
be very brittle and break under small perturbations

YieldStop Sign
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Defenses

How can we make more robust models?
• Ensembles

• Train multiple different models average results
• (Can make models more robust, but not resistant to adversarial attacks)

• Data Augmentation?
• Just add lots of random noise to inputs while training?
• Add in Adversarial Examples while training?

• Provably Robust Networks
• Lipschitz Continuity!
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Attack Transfer

Adversarial Examples tend to fool other networks as well

YieldStop Sign

If this attack was made using ResNet, it would likely work against VGG



Attack Transfer

• This also gives us another tool for adversarial attacks
• Suppose the model we are trying to break is not public (i.e., you 

can’t find the gradients)
• Black-box attack:

• Train a “surrogate” model on the same dataset
• Construct an adversarial example that works against your surrogate 

model
• Send attack to original model



Data Augmentation

If breaking the IID assumption caused 
our issues, can we just change the 
distribution of the training set?
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Data Augmentation

What if we just add lots of images with small amounts of random 
noise to our training data?

Cannot have enough new data to densely sample a high 
dimensional ball around each original input (number of points 
required grows exponentially with dimension)

Holes will still exist where your network can be exploited
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Adversarial Training

New Training Objective: Train a network that has lowest loss when 
attacked

min
𝜃

max
𝜖

𝐿(𝑥 + 𝜖)

Min-Max optimization problem can utilize sets of techniques from  
adversarial game theory
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 Attacker finds attack noise 𝜖
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 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights
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Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights

Another whole gradient 
descent process

Adversary makes move 
(generates noise)

Defender responds 
(updates weights)What are the tradeoffs of 

using adversarial training?



Provably Robust Networks



Provably Robust Networks

Can we guarantee our 
network will not deviate 
too much within some 

radius?



Maximum Gradient

If we knew the maximum 
gradient c = ∇𝜖𝐿, then we know 
that our loss function can 
change up to 𝑐 ⋅ 𝑟

If we can bound the gradient of a function to some 
constant c, that function is Lipschitz Continuous.



Maximum Gradient

If we knew the maximum 
gradient c = ∇𝜖𝐿, then we know 
that our loss function can 
change up to 𝑐 ⋅ 𝑟

Why is this true?

If we can bound the gradient of a function to some 
constant c, that function is Lipschitz Continuous.



Lipschitz Continuity

sin 𝑥  is Lipschitz Continuous, 
it has a maximum derivative of 1

𝑥2 is not Lipschitz Continuous, it 
does not have a maximum derivative



Are Neural Networks Lipschitz Continuous?
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Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is 
also Lipschitz continuous.

• Gradients are determined by weight layers and activation 
functions

• Assume ReLU activation for simplicity (maximum derivative of 1)
• Maximum gradient possible is determined by weights of network 

(which are finite)
• Lipschitz constant c may be very large, but it exists
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Limiting Lipschitz Constant

• It can be shown that the Lipschitz Constant for a single weight 
matrix W is the largest singular value of that matrix
• The largest Singular Value is the square root of the largest eigenvalue of 

the matrix 𝑊𝑇𝑊

• If we want to limit the Lipschitz Constant for a single layer, we just 
have to divide by that Singular Value…
• Can divide by 2 * Singular value to limit Lipschitz constant to 1/2

• This is called Spectral Normalization



Lipschitz Continuity

• Adding SpectralNormalization to layers, like BatchNorm, can help 
networks learn smoother loss functions

• Can make models (slightly more) robust to adversarial attacks
• The downside is that it is a much more restrictive condition on the 

network and the network may no longer learn good policies



Also for other applications…

Many physical phenomena are also Lipschitz 
Continuous

If you are trying to predict a physical phenomena, it 
may make sense to use Lipschitz continuity 
regardless of adversarial attacks.

Shi et al. Neural Swarm. 2022



Takeaways

Adversarial Attacks show how 
brittle models can be

Studying them gives us insights 
into what our networks learn

Defenses that make models 
robust against attacks probably 
also make them robust against 

other disturbances as well
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