
Deep Learning

Eric Ewing

CSCI 1470

Wednesday,
2/26/25 Day 15: Adversarial Learning

Logistics

• We will now allow up to 4 late days used for HW 2

The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Stop Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Stop Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Stop Sign: 99% Yield Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Stop Sign: 99% Yield Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

Adversarial Learning

- Can we (or adversaries) break our deep learning models
- Adversarial Attack: Can we add a small amount of noise to an

input that results in a misclassification?
- Data Poisoning: Can we insert data in the training dataset that

corrupts the model’s training?

Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?

Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?

Maximize (Test) Loss

Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?

Maximize (Test) Loss

Want to follow direction of
gradient (Gradient Ascent)

Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?
• What does our adversary have control of?

• Input data?
• Training Data?
• Our model? (Uh oh)

Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?
• What does our adversary have control of?

• Input data?
• Training Data?
• Our model? (Uh oh)

Most Commonly Studied

Normal Training:
- Compute gradients wrt weights and biases
- Update via gradient descent

Adversarial Example:
- Compute gradients wrt input
- Update input via gradient ascent

Normal Training:
- Compute gradients wrt weights and biases
- Update via gradient descent

Adversarial Example:
- Compute gradients wrt input
- Update input via gradient ascent

Learning a transformation to
an input

Attack Model

We do not expect to be able to withstand an attacker with unlimited
power.
If attackers can add unlimited noise, they can just change the image
entirely.

Threat Model

• We limit the power of the attacker
• Attacks must fall within some 𝐿𝑝-Ball of radius r

• 𝐿1-Ball: Sum of noise must be below r
• 𝐿2-Ball: Square root (sum of squared noise for each pixel) must be below

r
• 𝐿∞-Ball: Largest individual value of attack noise must be below r

https://medium.com/towards-data-science/know-your-enemy-7f7c5038bdf3

Gradient Ascent around
an input sample

What happens if we hit the
constraint and can’t keep

following the gradient?

Constrained Optimization

• Projected Gradient Ascent (PGA):
• Run Gradient Ascent
• If noise goes outside of constraint set, project back into constraint set

(Picture is for minimization)

https://www.researchgate.net/publication/358122337_Adaptive_Model_for_Magnetic_Particle_Mapping_Using_Magnetoelectric_Sensors

How big of a problem is this?

• Most models will never be under threat from
adversarial attacks

• But doesn’t this tell us something new about our
models?

How big of a problem is this?

• Most models will never be under threat from
adversarial attacks

• But doesn’t this tell us something new about our
models?

Fictional Character

Why Adversarial Attacks Work

Why Adversarial Attacks Work

We assume our
datasets are IID (Train

set looks like validation
set looks like test set)

Why Adversarial Attacks Work

We assume our
datasets are IID (Train

set looks like validation
set looks like test set)

Adversarial attacks
change the distribution

of the test set

Why Adversarial Attacks Work

We assume our
datasets are IID (Train

set looks like validation
set looks like test set)

Adversarial attacks
change the distribution

of the test set

Performance on training
set/validation set is no
longer indicative of test

performance

What did we learn in the first place?

If such small noise can change the outputs of our network, it clearly
is not making decisions in the way that humans do.
It isn’t always making decisions about stop signs based on color,
shape, or text…

YieldStop Sign

What did we learn in the first place?

Deep learning learns the “easiest” good representation, which can
be very brittle and break under small perturbations

YieldStop Sign

Defenses

Defenses

How can we make more robust models?

Defenses

How can we make more robust models?
• Ensembles

• Train multiple different models average results
• (Can make models more robust, but not resistant to adversarial attacks)

Defenses

How can we make more robust models?
• Ensembles

• Train multiple different models average results
• (Can make models more robust, but not resistant to adversarial attacks)

• Data Augmentation?
• Just add lots of random noise to inputs while training?
• Add in Adversarial Examples while training?

Defenses

How can we make more robust models?
• Ensembles

• Train multiple different models average results
• (Can make models more robust, but not resistant to adversarial attacks)

• Data Augmentation?
• Just add lots of random noise to inputs while training?
• Add in Adversarial Examples while training?

• Provably Robust Networks
• Lipschitz Continuity!

Attack Transfer

Adversarial Examples tend to fool other networks as well

YieldStop Sign

Attack Transfer

Adversarial Examples tend to fool other networks as well

YieldStop Sign

If this attack was made using ResNet, it would likely work against VGG

Attack Transfer

• This also gives us another tool for adversarial attacks
• Suppose the model we are trying to break is not public (i.e., you

can’t find the gradients)
• Black-box attack:

• Train a “surrogate” model on the same dataset
• Construct an adversarial example that works against your surrogate

model
• Send attack to original model

Data Augmentation

If breaking the IID assumption caused
our issues, can we just change the
distribution of the training set?

Data Augmentation

What if we just add lots of images with small amounts of random
noise to our training data?

Data Augmentation

What if we just add lots of images with small amounts of random
noise to our training data?

Cannot have enough new data to densely sample a high
dimensional ball around each original input (number of points
required grows exponentially with dimension)

Data Augmentation

What if we just add lots of images with small amounts of random
noise to our training data?

Cannot have enough new data to densely sample a high
dimensional ball around each original input (number of points
required grows exponentially with dimension)

Holes will still exist where your network can be exploited

Adversarial Training

Adversarial Training

New Training Objective: Train a network that has lowest loss when
attacked

Adversarial Training

New Training Objective: Train a network that has lowest loss when
attacked

min
𝜃

max
𝜖

𝐿(𝑥 + 𝜖)

Adversarial Training

New Training Objective: Train a network that has lowest loss when
attacked

min
𝜃

max
𝜖

𝐿(𝑥 + 𝜖)

Min-Max optimization problem can utilize sets of techniques from
adversarial game theory

Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights

Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights

Another whole gradient
descent process

Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights

Another whole gradient
descent process

Adversary makes move
(generates noise)

Defender responds
(updates weights)

Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights

Another whole gradient
descent process

Adversary makes move
(generates noise)

Defender responds
(updates weights)What are the tradeoffs of

using adversarial training?

Provably Robust Networks

Provably Robust Networks

Can we guarantee our
network will not deviate
too much within some

radius?

Maximum Gradient

If we knew the maximum
gradient c = ∇𝜖𝐿, then we know
that our loss function can
change up to 𝑐 ⋅ 𝑟

If we can bound the gradient of a function to some
constant c, that function is Lipschitz Continuous.

Maximum Gradient

If we knew the maximum
gradient c = ∇𝜖𝐿, then we know
that our loss function can
change up to 𝑐 ⋅ 𝑟

Why is this true?

If we can bound the gradient of a function to some
constant c, that function is Lipschitz Continuous.

Lipschitz Continuity

sin 𝑥 is Lipschitz Continuous,
it has a maximum derivative of 1

𝑥2 is not Lipschitz Continuous, it
does not have a maximum derivative

Are Neural Networks Lipschitz Continuous?

Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

• Gradients are determined by weight layers and activation
functions

Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

• Gradients are determined by weight layers and activation
functions

• Assume ReLU activation for simplicity (maximum derivative of 1)

Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

• Gradients are determined by weight layers and activation
functions

• Assume ReLU activation for simplicity (maximum derivative of 1)
• Maximum gradient possible is determined by weights of network

(which are finite)

Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

• Gradients are determined by weight layers and activation
functions

• Assume ReLU activation for simplicity (maximum derivative of 1)
• Maximum gradient possible is determined by weights of network

(which are finite)
• Lipschitz constant c may be very large, but it exists

Limiting Lipschitz Constant

Limiting Lipschitz Constant

• It can be shown that the Lipschitz Constant for a single weight
matrix W is the largest singular value of that matrix
• The largest Singular Value is the square root of the largest eigenvalue of

the matrix 𝑊𝑇𝑊

Limiting Lipschitz Constant

• It can be shown that the Lipschitz Constant for a single weight
matrix W is the largest singular value of that matrix
• The largest Singular Value is the square root of the largest eigenvalue of

the matrix 𝑊𝑇𝑊

• If we want to limit the Lipschitz Constant for a single layer, we just
have to divide by that Singular Value…
• Can divide by 2 * Singular value to limit Lipschitz constant to 1/2

Limiting Lipschitz Constant

• It can be shown that the Lipschitz Constant for a single weight
matrix W is the largest singular value of that matrix
• The largest Singular Value is the square root of the largest eigenvalue of

the matrix 𝑊𝑇𝑊

• If we want to limit the Lipschitz Constant for a single layer, we just
have to divide by that Singular Value…
• Can divide by 2 * Singular value to limit Lipschitz constant to 1/2

• This is called Spectral Normalization

Lipschitz Continuity

• Adding SpectralNormalization to layers, like BatchNorm, can help
networks learn smoother loss functions

• Can make models (slightly more) robust to adversarial attacks
• The downside is that it is a much more restrictive condition on the

network and the network may no longer learn good policies

Also for other applications…

Many physical phenomena are also Lipschitz
Continuous

If you are trying to predict a physical phenomena, it
may make sense to use Lipschitz continuity
regardless of adversarial attacks.

Shi et al. Neural Swarm. 2022

Takeaways

Adversarial Attacks show how
brittle models can be

Studying them gives us insights
into what our networks learn

Defenses that make models
robust against attacks probably
also make them robust against

other disturbances as well

	Slide 1
	Slide 2: Logistics
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: The Real World
	Slide 11: The Real World
	Slide 12: The Real World
	Slide 13: The Real World
	Slide 14: The Real World
	Slide 15: Adversarial Learning
	Slide 16: Objective
	Slide 17: Objective
	Slide 18: Objective
	Slide 19: Objective
	Slide 20: Objective
	Slide 21
	Slide 22
	Slide 23: Attack Model
	Slide 24: Threat Model
	Slide 25
	Slide 26: Constrained Optimization
	Slide 27: How big of a problem is this?
	Slide 28: How big of a problem is this?
	Slide 29: Why Adversarial Attacks Work
	Slide 30: Why Adversarial Attacks Work
	Slide 31: Why Adversarial Attacks Work
	Slide 32: Why Adversarial Attacks Work
	Slide 33: What did we learn in the first place?
	Slide 34: What did we learn in the first place?
	Slide 35: Defenses
	Slide 36: Defenses
	Slide 37: Defenses
	Slide 38: Defenses
	Slide 39: Defenses
	Slide 40: Attack Transfer
	Slide 41: Attack Transfer
	Slide 42: Attack Transfer
	Slide 43: Data Augmentation
	Slide 44: Data Augmentation
	Slide 45: Data Augmentation
	Slide 46: Data Augmentation
	Slide 47: Adversarial Training
	Slide 48: Adversarial Training
	Slide 49: Adversarial Training
	Slide 50: Adversarial Training
	Slide 51: Adversarial Training
	Slide 52: Adversarial Training
	Slide 53: Adversarial Training
	Slide 54: Adversarial Training
	Slide 55: Provably Robust Networks
	Slide 56: Provably Robust Networks
	Slide 57: Maximum Gradient
	Slide 58: Maximum Gradient
	Slide 59: Lipschitz Continuity
	Slide 60: Are Neural Networks Lipschitz Continuous?
	Slide 61: Are Neural Networks Lipschitz Continuous?
	Slide 62: Are Neural Networks Lipschitz Continuous?
	Slide 63: Are Neural Networks Lipschitz Continuous?
	Slide 64: Are Neural Networks Lipschitz Continuous?
	Slide 65: Are Neural Networks Lipschitz Continuous?
	Slide 66: Limiting Lipschitz Constant
	Slide 67: Limiting Lipschitz Constant
	Slide 68: Limiting Lipschitz Constant
	Slide 69: Limiting Lipschitz Constant
	Slide 70: Lipschitz Continuity
	Slide 71: Also for other applications…
	Slide 72: Takeaways

