CSC,:I‘147(’) B r Deep Learrﬁlﬂ.g |
4 R e o ' % T IR
» R 0 ‘.. .

Eric Ewing ‘_ g e BT ®

R

Mo n:cgl ay,
2/24/25

..-

- Day 14:ResNet and Regularization

) »
.

”~ > .

X

_

oL
aa“] azm aam oL —=1 L
—

oL JL da™ 9z7'* 9a""
oW, " 9™ 377 g oW,

https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33, https://cv-tricks.com/keras/understand-implement-resnets/

Revolution of Depth

8Iayers | 8layers shallow

—————— ILSVRC'14 ILSVRC'13 ILSVRC'12Z ILSVRC'11 ILSVRC'10
W VGG AlexNet

i | . . :
Deep Layers Somvﬁ;re - Initial eNet Classification top-5 error (%)

the middle Layers

More Complicated Networks

ResNet:

Lots of layers, tons of learnable parameters

Avoids Vanishing Gradient problem

but how?
Revolution of Depth

152 layers
s
| 221ayers | | 19 Iayers I I

3.57 l I 8 layers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

arXiv preprint arXiv:1512.03385, 2015. 51

Image Classification on ImageNet

Leaderboard Community Models Dataset
View Top 1 Accuracy v by Date v for | All models v
100 E
Meta Pseudo Labels (EfficientNet-L2) CoCa (finetuned)
20 FixResNeXt-101 32x48d NoisyStudent (EfficientNet-B7)
> NASNET-A(6)
U .
§ 20 Inception V3 Inception ResNet V2
- VGG
W]
O
<
= 70
% OverFeat
= Alexnet
60
50
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Other models State-of-the-art models

More Complicated Networks
ResNet: =

Lots of layers, tons of learnable parameters
Avoids Vanishing Gradient problem

weight layer
F(x) l relu

weight layer

X

Residual Block >

identity

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning For image recognition.
arXiv preprint arXiv:1512.03385, 2015.

Residual Blocks

In very deep nets, each layer often needs
to learn just a small transformation of the
preceding layer (identity + change)

|dea: explicitly design the network such
that the output of each layer is the identity
+ some deviation from it

* Deviation is known as a residual

X Skip connection
weight layer
F(x) l relu =
weight layer identity

53

Residual Blocks

* |In very deep nets, each layer often needs
to learn just a small transformation of th
preceding layer (identity + change)

* ldea: explicitly design the network such
that the output of each layer is the identi
+ some deviation from it

* Deviation is known as a residual

« Allows gradient to flow through two
pathways

* Significantly stabilizes training of very
deep networks

https://blog.perceptilabs.com/using-resnets-to-detect-anomalies-in-industrial-iot-textile-production/

Gradient
pathway-1

Input to the
residual block

(x)

Identity mapping

Gradient pathway-2
<
\ /

Residual mapping
i.e. F(x)

Gradient
pathway-1

Output of the
residual block
H(x) = F(x) + x

54

Tensorflow

Option #1: Residual Block

tfm.vision.layers.ResidualBlock(filters, strides)
Option #2:

Residual Block
def ResBlock(inputs):
x = layers.Conv2D(64, 3, padding="same", activation="relu") (inputs)

x = layers.Conv2D(64, 3, padding="same") (x)
x = layers.Add() ([inputs, x])
return x

Original Input Intermediate Output

https://keras.io/examples/vision/edsr/

Residual Blocks

* |In very deep nets, each layer often needs
to learn just a small transformation of th
preceding layer (identity + change)

* ldea: explicitly design the network such
that the output of each layer is the identi
+ some deviation from it

* Deviation is known as a residual

« Allows gradient to flow through two
pathways

* Significantly stabilizes training of very
deep networks

https://blog.perceptilabs.com/using-resnets-to-detect-anomalies-in-industrial-iot-textile-production/

Gradient
pathway-1

Input to the
residual block

(x)

Any questions?

Identity mapping Gradient
pathway-1

Gradient pathway-2

P Output of the
e SN / residual block
T H(x) = F(x) + x
Residual mapping
i.e. F(x)
54

Activation Amount

Batch Normalization (stabilizing training)

ldea: normalize the activations for each feature at each layer

Activation with Batch Norm

. Activation without Batch Norm 10.0
0.0
7.5 4 e
5.0 -F 5.0 4
€
2.5 3 2.5
v £
<
0.0 5 00 VWA N NWNANMNNAMAN SN MANNS
E:
-5 g =251
<
~5d -5.0
-7.
? -7.5
-10.0 T T T T
0 20 40 60 80 100 -10.0 T T T T
0 20 40 60 80 100

Feature in Batch
Feature in Batch

Why might we want to do this?

55

Batch Normalization: Motivation

More stable inputs = faster training

MNIST test accuracy vs number of training steps

1

09} 7

0.8h - = = Without BN

With BN

10K 20K 30K 40K 50K

https://arxiv.org/pdf/1502.03167.pdf

56

Batch Normalization: Implementation

For each feature x, Start by calculating the batch mean and standard
deviation for each feature:

batch_size
i=0 Xi

Hbatch = batch_size

- 2
batch_size
i=0 (xi _ ﬂbatch)

\ batchg;,,

Opatch =

Batch Normalization: Implementation

Normalize by subtracting feature x’s batch mean, then divide by batch
standard deviation.

, X — Upatch
x p—

Opatch

Feature x now has mean 0 and variance 1 along the batch

Batch Normalization in Tensorflow

tf.keras.layers.BatchNormalization (input)

D 0 C U IT] e n ta tl 0 n : https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/BatchNormalization

59

Motivation of BatchNorm

e Reduce “internal co-variate shift”

e Neural networks are trained on a certain distribution of data and
are expected to be tested on the same distribution

* |f we were to scale the colors of an image significantly at test time,
we wouldn’t expect a neural network to do well

* The same can be said for our intermediate layers

* They expect a certain distribution of inputs, if that changes significantly
from example to example, it will be hard to learn

* (Most commonly cited reason for using BatchNorm)

The only issue Is that controlling internal
covariate shift does not matter that much...

How Does Batch Normalization Help Optimization?

Shibani Santurkar* Dimitris Tsipras* Andrew Ilyas* Aleksander Madry
MIT MIT MIT MIT
shibani@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu
Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

BatchNorm makes the loss landscape smoother
with fewer local minima, saddle points, and other
problematic areas for gradient descent

How Does Batch Normalization Help Optimization?

Shibani Santurkar* Dimitris Tsipras* Andrew Ilyas* Aleksander Madry
MIT MIT MIT MIT
shibani@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu
Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

Theory, intuition, and experimental results can all tell you different
things

Why do CNNs work so well?
Intuition: Looking for a way to get
“spatial reasoning” or translational
invariance

Why does BatchNorm work so well?
Intuition: If normalizing input data
works so well for training, why not
normalize input features to

. . o
intermediate layers: Theory/experiments: Maybe it’s just

that using fewer weights lets us go
deeper and deep networks learn
better (and also they have spatial
reasoning)

Theory/experiments: Makes
gradients of loss function “better”

Depth Giveth and Depth Taketh Away

Train Loss
Validation Loss

Loss

0 L | | } | | | |]
0 10 20 30 40 50 60 70 80 90 100
Number of Iterations

Resnettrained on image classification task

Depth Giveth and Depth Taketh Away

1.8 [~

Train Loss
1.6 Validation Loss

14 -

What’s the 12 - -
problem?

Loss
—

0.2 _

0 | L l + L L
0 10 20 30 40 50 60 70 80 90 100

Number of Iterations

Resnettrained on image classification task

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
- Try a shallower network

224x224x3

VGG:

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning

- Try a shallower network

224x224x64
12x112x128

56x56x256

28x28x512

14x14x512

7x7x512

Pool

1x4096 1x4096

Ll

— output

1x1000

48

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning

224x224x3

VGG:

ool

12x112x128
56x56x256
Pool
Pool

- Try a shallower network

224x224x64

28x28x512

14x14x512

Pool

7x7x512

Pool

1x4096 1x4096

l

1x1000

The size of the linear layer is controlled by number of max-pools
Fewer convolutions could actually increase weights in the network...

— output

48

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
- Try a shallower network
- Fewer channels in convolutions

Hyperparameter Tuning

* Manually tuning parameters is seen by DL practitioners as a bit
“old fashioned”

* The goal of deep learning is to automatically find good models in a general
way

* Any human-driven heuristic approach makes the process specific

Hyperparameter Tuning

* Manually tuning parameters is seen by DL practitioners as a bit
“old fashioned”

* The goal of deep learning is to automatically find good models in a general
way

* Any human-driven heuristic approach makes the process specific

Can we write a methodto__ and then run deep learning on that output?
(center the image, recognize letters on signs, label parts of a sentence)

The Bitter Lesson of Al

The bi%gest lesson that can be read from 70 years of Al research is that
general methods that leverage computation’are ultimately the most
etfective, and by a large margin.

Richard Sutton

The Bitter Lesson of Al

The bi%gest lesson that can be read from 70 years of Al research is that
general methods that leverage computation’are ultimately the most
etfective, and by a large margin.

Richard Sutton

1) Alresearchers have often tried to build knowledge into their
agents

2) This always helps in the short term, and is personally satisfying to
the researcher, but

3) In the long run it plateaus and even inhibits further progress

4) Breakthrough progress eventually arrives by an opposing |
approach based on scaling computation by Search and learning.

Hyperparameter Tuning

* Manually tuning parameters is seen by DL practitioners as a bit
“old fashioned”

* The goal of deep learning is to automatically find good models in a general
way

* Any human-driven heuristic approach makes the process specific

Can we write a methodto__ and then run deep learning on that output?
(center the image, recognize letters on signs, label parts of a sentence)

Manual hyperparameter tuning is a flaw that
needs to be overcome

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
- Try a shallower network
- Fewer channels in convolutions

Option #2: Regularization
- “Encourage” model to be lower complexity

Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t
work for regression tasks because they overfit. ﬂ

When they overfit, the parameters of some terms
get very large. y

Let’s penalize the model for having large
parameters.

Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t
work for regression tasks because they overfit. ﬂ

When they overfit, the parameters of some terms
get very large. y

Let’s penalize the model for having large
parameters.

Original Loss=MSE (y, ¥)

1
L2 Regularization Loss =MSE (y, 9) + A(W¢ + w? + w2 ...)2

Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t
work for regression tasks because they overfit. ﬂ

When they overfit, the parameters of some terms
get very large. y

Let’s penalize the model for having large
parameters.

Original Loss=MSE (y, ¥)

1
L2 Regularization Loss =MSE (y, 9) + A(W¢ + w? + w2 ...)2

L2 Norm (2 refers to power)

Regularization L2 Norm Penalty

* Why do neural networks overfit? Perhaps their weights get large as
well.

* Can add a penalty to all weights or individual layers
* Smaller weights — simpler function learned

from keras import regularizers

model.add(Dense(64, input_dim=64,
kernel_regularizer=regularizers.12(0.01)))

Dropout — general intuition

- Preventing the network from learning under perfect conditions; that
is, make it harder for the network to learn

A climbing analogy: 4
A person is climbing a wall using holds !

What if, | make a rule that she can climb

« ...only using certain holds (say just green ones!) b
 |fshe can learn to do this using fewer holds... <
« ..she'll definitely be able to do it with ALL the holds L

(learn better climbing techniques in the process)

Dropout ~= using only a certain holds instead of ALL the holds

Image source https://www.istockphoto.com/illustrations/indoor-climbing

Dropout - what?

A \ “/ NS
NIRRT
JSIBINRIN
AR
SEHINY

“V "'ﬁ mv v‘v
ALY B AV
NEHARRSY

<D ’:57 WKV

LSRN

Typical NN: the output of
every node in every layer
is used in the next layer of
the network

Dropout - what?

’(
2V (i _ Vst

RNAD
RSOHRIKL SRR

NSIKNK 7 N
Pl Y

ﬁ}f&‘@&ﬁ& LGOI

Dropout: in a single
training pass, the output
of randomly selected
nodes from each layer will
“drop out”, i.e. be setto 0

Dropout - what?

ISR
V2000 6
N
70
7 A AN 3
‘-lry" “\\r

Dropout: in a single
training pass, the output
of randomly selected
nodes from each layer will
“drop out”, i.e. be setto 0

Dropout - what?

Not just limited to the
% 4 input layer: can do this to
2

any layer of the network

= ®

4
)

1))
2 6 4
o 2 (-}
o o 3
1 4 o

Dropout - what?

The nodes that drop out will

.% be different each pass

(re-randomly selected)
O O

Dropout - what?

The nodes that drop out will
be different each pass

(re-randomly selected)

Dropout - why?

- Sort of looks like data augmentation, if you squint hard enough
- Augmenting the data by randomly dropping out parts of it

- Over multiple passes through the net (i.e. during training over many
epochs):

- Randomly dropping neurons “forces” each neuron to learn a non-trivial
weight

- The network can’t learn to rely on spurious correlations (i.e. meaningless
patterns), because they randomly might not be present

Dropout: Implications for test time

* During testing, we stop
dropping out and use all
of the neurons again

Dropout: Implications for test time

* During testing, we stop
dropping out and use all
of the neurons again

N7,
AR

&\ /
WX W N XL NAWSAVOE
QKN WHKLY VAV
NI IR
XL RERERK XN
LR\ RN
ER. S
G AR
FEOK ERK

U
U7 SN
)75

Dropout: Implications for test time

»" During testing, we stop
dropping out and use all of
the neurons again

- If a layer keeps a fraction p
of its neurons during
training, then when we use
all the neurons at test
time, the next layer will
get a bigger input than
expected...

What do we do!?

Dropout: Implications for test time

. Solution 1:
Multiply the values of all
neurons by p, so that the
expected magnitude of
the sum of neurons is the
same

Dropout: Implications for test time

. Solution 1:
Multiply the values of all
neurons by p, so that the
expected magnitude of
the sum of neurons is the
same

- Solution 2:
At training time, divide the
values of the kept neurons

by p

Any questions?

Dropout - implementation 7?9

- Handy keras layer! @ |

-tf.keras.layers.Dropout(rate)

- Hyperparameter between [0, 1]: the rate at which the outputs of the
previous layer are dropped

- Rate = 0.5: drop half, keep half
- Rate = 0.25: drop %4, keep %

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Tensorflow
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Motivation of BatchNorm
	Slide 17: The only issue is that controlling internal covariate shift does not matter that much…
	Slide 18: BatchNorm makes the loss landscape smoother with fewer local minima, saddle points, and other problematic areas for gradient descent
	Slide 19
	Slide 20: Depth Giveth and Depth Taketh Away
	Slide 21: Depth Giveth and Depth Taketh Away
	Slide 22: Dealing with Overfitting (Again)
	Slide 23: Dealing with Overfitting (Again)
	Slide 24: Dealing with Overfitting (Again)
	Slide 25: Dealing with Overfitting (Again)
	Slide 26: Hyperparameter Tuning
	Slide 27: Hyperparameter Tuning
	Slide 28: The Bitter Lesson of AI
	Slide 29: The Bitter Lesson of AI
	Slide 30: Hyperparameter Tuning
	Slide 31: Dealing with Overfitting (Again)
	Slide 32: Regularization: L2 Norm Penalty
	Slide 33: Regularization: L2 Norm Penalty
	Slide 34: Regularization: L2 Norm Penalty
	Slide 35: Regularization L2 Norm Penalty
	Slide 36: Regularization: Dropout
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Recap

