laCC 14700

~ Eric Ewing . -

T

Wednesday,, |

- 212/25 -

- Day]Q: In"tr.oducti_oh-:tb- C'OI’).VO|UT'iQI’1.S & 4

il o\

Recap: MLPs

Compute Error/Loss on training set
Run Backprop and SGD

Repeat until convergence

If performance on validation setis
acceptable, terminate, else try new
hyperparameters

Input: X

Target: Y

A Brief History of Al with Deep Learning

E First E First E Second E Second E s Third
' Golden Age ! Dark Age ! Golden Age ! Dark Age ; : Golden Age
: L " QR ———, VPR Wy »
Birth : : : : AlexNet
[
of Al Backpropagation SVMs e
1956 ADlg;lglg\!E XOR 1986 1995 1 Transformel
Artificial Turing 1 2 Problem Neoclc;ggr[w)itron 1 RBM :’"’zf{
Neuron Test Perceptron 1969 UAT CNN Initialization GAN GPT-3 4
1943 1950 1957 1989 ys0s 2006 2014 | 2020

V

McCulloch-Pitts Rosenblatt ~ Widrow-Hoff Minsky-Papert Rumelhart, Hinton etal. LeCun Hinton-Ruslan Krizhevsky et al. Vaswani
X1 Inputs Weights Net input Activation OR XOR -~ —
X2 ';l)\,w function function 1 ’ ‘ 1 ’ . () “‘:‘ .5 3 [\..._ -3 , &
X3+ — AL\ ; . »‘S ~ g
Xn “ output \ 1—e{ 2} :?(\‘ > _;%‘t -
10 N\ @Jof® @ I TLSRSomy
0 1 0 1 s —e(i U Sh e

What has happened in the last 15 years?

What has changed?
1. Power and efficiency of compute (GPUSs)
2. Availability of data (the internet)
3. New Architectures (e.g., CNNs, Transformers)

Issues with MLPs

1. Resource Intensive
2. Difficult to incorporate certain types of information

3. (and more)

Issues with MLPs

1. Resource Intensive

GPUs to the rescue!

« Graphics Processing Units

o GPUISI alrle really good at computing mathematical operations in
parallel!

- Matrix multiplication == many independent multiply and add
operations
Easily parallelizable

GPUs are great for this!

Image courtesy: https://global.aorus.com/blog-detail.php?i=878

CPU v/s GPU

output

output

T

Write
back

CPU

]

input

/ ALU Arithmetic logic unit

A

Decode

!

Fetch

T

input

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

the the
instruction and instruction. (Covert
any data from
main memory.

the instruction into
a language the CPU
understands.)

instruction.
(Complete the
instruction)

CPU v/s GPU

GPU: specialized accelerator

output Fetch

output WIite Decode
T back Jaw\ /A /A /AL
CPU AU | [A\ [A [A Jau\ /A /A [Aw
InpuI Decio % Vector operations / ALU\ / ALU\ / ALU\ / ALU\
Fetch (SSE/AVX) /au\ /AW /A [Aw

iniut /au\ /A /A [Aw

Write back

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

GPU-Parallel Acceleration

* User code (kernels) is compiled on the
host (the CPU) and then transferred to the
device (the GPU)

* Kernel is executed as a grid
* Each grid has multiple thread blocks
* Each thread block has multiple warps

A warp is the basic schedule unit in
kernel execution

A warp consists of 32 threads

Compute Unified Device
Architecture is a parallel
computing platform and
application programming

interface (API)

CUDA compute model

s

[Host (Kernel 0)]
A 2
/~ __ Device £\
Grid 0
(_ Block0) (__Biock1) (_Block2) (_ Block3)
(_Block4) (__BlockS§) (_Block6) (_ Block7)

(_Block8) (Block9) (Block10) (Block11)

(“Block12) (Block13) (Block14) (Block15)

N\

14

GPU-Parallel Acceleration

CUDA compute model
8 - \ N
[Host (Kernel 0]]
v
4 Device \
Grid 0
(BlockO) (Block1) (Block2) (Block3)
(Block4) (BlockS) (Blocké) (Block7)
(Block8) (BlockS) (Block10) (Block11)
(Block 12) (Bock13) (_Block1a) (_Block15)

- Programmer decides how they want
to parallelize the computation across
grids and blocks

* Modern deep learning frameworks take
care of this for you

- CUDA compiler figures out how to
schedule these units of computation
on to the physical hardware

15

Any questions?

GPU-Parallel Acceleration r N

CUDA compute model

* Upshot: order of magnitude speedups!

Host (Kernel 0)

v e Example: training CNN on CIFAR-10 dataset
/~__ Device %)
Grid 0
Block1) (Block2) (_ Block3)
Block5) (_ Block6) (_ Block7)
Block9) (_Block10) (__Block11)

B s (BT (e Speed of training,
Device examples/sec

2 X AMD Opteron 6168 440
17-7500U 415
GeForce 940MX 1190
GeForce 1070 6500

rom

(__Block0)
(_Block4)
(__Block8)
(" Block 12

C
(
(
(

»

rrom.

h++rne//man - m /A andrivl ~Aronla /fancnarfl Ar-narfAarmanc +ack_rr
nttps://medium.com/@andriylazorenko/tensorriow-perrormance-test-cp

u-vs-gpu-79fcd39170c

>

kion sao' f fua 2ar raenarsihaada adlniiihlisakin o} Pl nfl =]] Arnralaratine: Tihra S o g i T ki adl franmn NNifEii1ciny \Aaiahdan A ~tir DacaAn- re lrasaing nf le
https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_lmaging_Using_GPUs

AM D G PU s are Assassin's Creed Valhalla | 2560x1440 | Ultra High | DX12
competitive for

\ 4

AMD Radeon RX 6900 XT 16GB

AMD Radeon RX 6800 XT 16GB

gaming and graphiCS, GeForce RTX 3090 Ti 24GB
why not for Al? e

GeForce RTX 3090 24GB
GeForce RTX 3080 10GB

AMD Radeon RX 6750 XT 12GB
AMD Radeon RX 6700 XT 12GB
GeForce RTX 3070 Ti 8GB

GeForce RTX 3070 8GB

GeForce RTX 3060 Ti 8GB

20 40 60 80 100

- CUDA is far better than competitors (AMD) (With a benchmarking tool made by AMD)
- Easiertouse

- Better optimization
- AMD makes GPUs for graphics, NVIDIA makes GPUs for Al

CUDA is Still a Giant Moat for NVIDIA

Despite everyone's focus on hardware, the software of Al is what protects NVIDIA

n JAMES WANG
g MAR 23, 2024

Issues with MLPs

2. Difficult to incorporate certain types of information

MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

What would happen if
we permuted the
ordering of the pixels?

MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

What would happen if
we permuted the
ordering of the pixels?

Will the training of the
neural network differ?

No! MLPs do not use spatial
information, it does not
matter which order the pixels
arefedinsolongasitisthe
same ordering for every input

MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

Isn’t this actually a hard
problem that we are
trying to learn?

Limitations of Full Connections for MNIST

Suppose we've got a well-trained MNIST classiFfier...

12
cFEEEEEEEERE- -

cocHHBEEBEERE = -

#1 encoded as [)

Limitations of Full Connections for MNIST

Suppose we've got a well-trained MNIST classifier...

1

#1 encoded as [)

this pixel gets weight 0.6

0 0) 0 0o 0 0 o0
0 0 0 0o 0 0 o0
0 5 B 0 o 0 0 o0
0 HE B 0 0 0 0 0
cooom m o o oo o ol this pixel gets weight 0.1
0 | A4 0 0 0 0
0 B = 0 ‘ 0 g0 ——)
0 0 0 EH 4 0 o 0 o0 o
0 0 0 B = 0 0 0 0
0 0 0] 0 0] (
0 0 0 Bl 1 0
0 0 0 ? . 1 0
) 0) 0 0 0
) 0) 0 0 0

this pixel gets weight 0.9

Limitations of Full Connections for MNIST

If we shift the digit to the right, then a different set of
weights becomes relevant C— etwork might have
trouble classifying this as a 1...

this pixel gets weight 0.6

—hh.

. | this pixel gets weight 0.1

12
CAEEEEEEEN

EEEERESEES

#1 encoded as [_

Canyou tell thisis a 1? this pixel gets weight 0.9

This would not be a problem for the
human visual system

Our eyes don't look at absolute intensity values... this pixel has a low intensity

-ne

o o this pixel has a high intensity
X T

*

BEEEE RS

#1 encoded as

this pixel has a low intensity

This would not be a problem for the
human visual system

...but rather local differences in intensities this intensity difference is large

= this intensity difference is large
5 G 5

12
‘AEEEEEEEN

#1 encoded as []

this intensity difference is zero

Translational Invariance

~ To make a neural net f robust in this same wayj, it should ideally satisfy
translational invariance: f (T (x)) = f(x), where
« x is the inputimage
« T is a translation (i.e. a horizonal and/or vertical shift)

e i el B o 0os e o =
0 N 0o 0) 0 0 0 0 o0 - » 0
0 _ o o0 n) 0 0 0 0 0 "N o
(B 0o 0 o 0 0o o o0 o0 B o
0 " B = 0o o0 I » 0 o0 0 0 o " B = 0
0 Y i 0o 0 0 o) 0 0 n i 0
“ = o o I R "B °
0 B o o » 0 0 0 0 o " n 0
0 | 0o o » 0 o0 0 0 o) 0
0 " N 0 o) 0 0) 0 0 | 0
C] ol 0 0) 0 0 Y 0 0) m 0
(0 0) 0 0) 0 0 o

Lo ° 0 Lo 0 0) 0 0 04

Fully Connected Nets are not
Translationally Invariant

this pixel gets weight 0.6 this pixel gets weight 0.6

UUUUUUUU

‘ o o this pixel gets weight 0.1

o this pixel gets weight 0.1

A

EEEERERES

T

this pixel gets weight 0.9 this pixel gets weight 0.9

0 0 0
1] 0 1} o 0
0 0 0 (1] 0
0 1] 1] o 0
— 5 8
0 o 0 (1] 0
L0 o 1] (1] 0

Sum of these three: 0.6 - 08+ 0.1-04+09-1 =1.38 Sum of these three: 0.6 -04+0.1-04 +09-0=0.4

How can we change a fully-
connected network to

MLPs and Spatial Reasoning account for spatial

information?

MLPs (also called fully-connected networks) have weights from
every pixel to every neuron

a Fully Connected . Not Fully-Connected
Q O

@ [O

Q ® O O O O

Q O O O O

O O O O O

O O O O O

O O O O

O O O = o O ©
O O O O O

O O O ® O O

O O O O O o

O O O ® O O

o & O O

9 O

S O

MLPs and Spatial Reasoning

Patches: Pixels close to each other

Advantages of Not Fully Connected Layers

* Fewer weights — Faster?
* The outputs of neurons are

“features” for local “patches” = NotFully-Connected
. O
* Incorporates spatial o
information (pixels that are - - -
close together matter) O O
O O
O
O ® ©
O O
O O O
O O O
O O O
O O
O
O

Disadvantages of Not Fully Connected Layers

* What happens if the image is
Translated?

* The patches on the right side

were never trained with 5’s in j:' j-j'
that side. S l - S

r : 1 15 M % B3 o 5 0 15 M X

What if we used the
same weights for each
patch? (Weight Sharing)

Even though we include spatial information, we still don’t
have spatial reasoning. (Can’t recognize a shifted 5 is stilla 5)

The Main Building Block: Convolution

Convolution is an operation that takes two inputs:

(1) An image (2D - B/W) (2) A Filter (also called a kernel)
1(1|1
O(0(O
-1|-1|-1

2D array of numbers; could be any values

What Convolution Does (Visually)

image filter/kernel
2013

71110 ol il s
0|2|5]|0 ® [9]9]60
0l5|1]a A\\ -1(-1|-1

(We use this symbol for convolution)
(The verb form is “convolve”)

What Convolution Does (Visually)

o

o

o
= OO | W

What Convolution Does (Visually)

output

2x1 + 0x1 + 1x1 + 7x0
+ 0x0 + 1x0 + Ox-1 +

‘h
‘h
el
‘-

L

-4

What Convolution Does (Visually)

image output

o

o

o
= 1 O[O W

What Convolution Does (Visually)

image output

OO |Nd|DN
o
o
o

What Convolution Does (Visually)

image

0x1

1x1

3x1

1x0

1x0

0x0

output

2x—1

5x—1

Ox—l

OO |

What Convolution Does (Visually)

output
Ox1 + 1x1 + 3x1 + OxO + 1x0
+ Ox0 + 2x-1 + 5x-1 + Ox-1
"7 TN
” ~
- |

What Convolution Does (Visually)

7x1 + 1x1 + 1x1 + Ox0 + 2x0
+ 5x0 + Ox-1 + 5x-1 + 1x-1

- e e e
—--
—
—

output

What Convolution Does (Visually)

image output

1x1 + 1x1 + Ox1 + 2x0 + 5x0 _4 _3
+ 0x0 +5x-1 + 1x-1 + 4x-1

—y, -
h-————ﬂ

What Convolution Does (Visually)

image filter/kernel

output

210]11(3

711]|1]0 all il e

ol25]0]® 2 t° - =
-1(-1|-1 3-8

O(5]|]11|4

Handmade Kernels and Filters

0 O
0 1
0

Identity kernel

1
9

1 1

1 1

1 1
Box blur

=l =1 =l
-1 8 -1
-1 -1 -1
Edge detection
1-
1
256

4
1

0 -1
-1 5

0 -1

]

—1

0_

Sharpen kernel

4 6 4 1]

16 24 16 4
24 36 24 6
16 24 16 4

4 6 4 1)

Gaussian blurr kernel

Operation

Kernel w

Image result g(x,y)

Identity

0 -1 0
—1 4 -1
0 -1 0
Ridge or edge detection |-
-1 -1 -1
-1 8 -1
-1 -1 -1
0 -1 0
Sharpen -1 5 —
0 -1
Box blur

(normalized)

Gaussian blur3 x 3

(approximation)

What Comes Next?

Can we learn a filter for our images rather than “hand crafting” one?

Recap

	Slide 1
	Slide 2: Recap: MLPs
	Slide 3
	Slide 4: What has happened in the last 15 years?
	Slide 5: Issues with MLPs
	Slide 6: Issues with MLPs
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Issues with MLPs
	Slide 15: MLPs and Spatial Reasoning
	Slide 16: MLPs and Spatial Reasoning
	Slide 17: MLPs and Spatial Reasoning
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: MLPs and Spatial Reasoning
	Slide 26: MLPs and Spatial Reasoning
	Slide 27: Advantages of Not Fully Connected Layers
	Slide 28: Disadvantages of Not Fully Connected Layers
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Handmade Kernels and Filters
	Slide 41: What Comes Next?
	Slide 42: Recap

