Deep Learning

Eric Ewing Day 6: Backprop and-SGD
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Where We left Off: Gradient Descent

* Algorithm to optimize
d iffe re ntia b le fu N Cti ons Gradient points in direction of increasing loss

Starting point

* Used frequently elsewhere in Al
and optimization \

* In DL, used to train/fit/optimize
network parameters



Goals for Today

(1) How do we find gradients of our neural network?
(1) Backprop (Backpropagation of Errors)

(2) How do we use those gradients to find good solutions?
(1) Stochastic Gradient Descent



Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg
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Derivatives/Gradients only hold locally
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Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence l g8 ‘:’
Understanding gradient descent is the single most X

important concept in all of Deep Learning. Most decisions | L
s

in DL are made for reasons related to gradients.
For N iterations oruntil A8 < €:

§<—9—an9

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.




Gradients

Gradient descent needs gradients, how do we actually calculate them?



Weight Matrix for a Layer of Neurons

* We have an input of size n and we want an output vector of size m.

* We will represent our weights as a matrix.
* What should the dimensions of our matrix be?

, m inputs
n inputs




Weight Matrix

* We have an input of size n and we want an output vector of size m.

* We will represent our weights as a matrix.
* What should the dimensions of our matrix be?

m inputs

wj; is the j*" row and the i*" column of our matrix, or the weight ninputs thi
multiplied by the ith index of the input which is used to create the jth '
index in the output

0 i t n




Jacobians

* Gradients are for functions with multiple inputs and one output
* Hidden layers in our neural networks have multiple outputs
* The Jacobian matrix is the matrix of all partial derivatives

Input Variables:
[Xl, X2, ...,xn]
Oh . 04 ]
8.’131 8$n

f:R* - R™

Output Variables: ) " )
Lf1 f2r - fn] Ofm  Ofm
L 6551 amn .




Chain rule

If f and g are both differentiable and F(x) is the composite function defined
by F(x) = flg(x)) then F is differentiable and F’ is given by the product

F'(x) =f"(g(x)) g’(x)
: !

Differentiate Differentiate
outer function inner function

Courtesy: https://www.onlinemathlearning.com/chain-rule.html



Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*



Backprop Derivation

We will use the following notation:

X € R™*4: Data matrix

W . Weights matrix for layer |

AQE output of neurons at layer [ before activation
o (D: activation function of neurons at layer [

a®: output of neurons at layer [ after activation
y: output of neural network

L(y,¥): Loss Function



Backprop Derivation (Blackboard)

9y =gkt (Wk..c? (W?cl(W1X)))

dL  dL
Need: T




Gradient Descent Revisited

* We can calculate gradients
effiCie ntl_y, therefo re we canrun Gradient points in direction of increasing loss
. Starting point
gradient descent *°

e But what about all of its issues... R



Non-Convex Functions

MSE is not convex with respect to network parameters
when non-linear activations are involved.

Multiple local minima

Saddle points

. Local maxima
-1 ) W1




Stochastic Gradient Descent

* (full) Gradient Descent is slow, need to calculate gradient with many
training examples

* Alternative: only use part of data at any given time (a batch)
* Sample small batch from dataset, compute gradient only using the batch

For N iterations or until A9 < e:
For each batch (Xp, yp) in (X, y)

Compute Loss L = lossg, (fg(Xp), Vp)

g dL
(_ e —
6 6 adg

S

Compute with Backprop!



SGD

* SGD does not always take
steps in the direction of the full
gradient

* Sometimes those steps make
total loss go up (i.e., can escape
local minima)
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Stochastic Gradient Descent
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Figure 8: Left: Generalization error in terms of top 1 precision for varying model size on
Imagenet. Right: The same with top 5 precision.

SGD generalizes better than vanilla Gradient Descent.
(Generalization is performance on test set)

Train faster, generalize better: Stability of stochastic gradient descent. Hardt et al.



What size should the batch be?

Small batch size:
Fast, jittery updates

Batch Size: 1

0l
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Large batch size:
Slower, stable updates

Batch Size: 100

100 200 300 400 500 600

Epoch

Any questions?

222

<)



Generalizing Backpropagation

* What if we want to add another layer to our model?

« Calculating derivatives by hand again is a lot of work 2

input linear layer new layer softmax loss



Computer-based Derivatives

~ Numeric differentiation

A f(x+Ax)—f(x)
dx Ax
* Pick a small step size Ax

* Also called “finite differences”




Computer-based Derivatives

Ax = 0.5

<
I
Ll

~ Numeric differentiation

L A4f  fOe+A0)—f(x)
dx Ax
* Pick a small step size Ax

 Also called “Finite differences”
* Easy to implement
« Arbitrarily inaccurate/unstable




Computer-based Derivatives

* Numeric differentiation
d/dx (2x + 3x*2 + x (6 - 2))

* Symbolic differentiation

e Computer “does algebra” and ffo Extended Keyboard * Upload
simplifies expressions

* What Wolfram Alpha does

Derivative:
https://www.wolframalpha.com/

d i ‘
—(2x+3x" +x(6-2))=6(x+1)

dx \ /

d 6x + 3x2
dx(x x“)



Computer-based Derivatives

* Numeric differentiation
e Symbolic differentiation

e Automatic differentiation
e Use the chain rule at runtime

Chain Rule

Y ¢ Y ¢ )

h(x)

g(h(x))

(9(h(x)




Computer-based Derivatives

* Numeric differentiation  sinx + cos?x = 1
« Symbolic differentiation « Automatic differentiation doesn'’t
o o know this identity, will end up
* Automatic differentiation evaluating the entire expression
* Use the chain rule at runtime on the left hand side

* Gives exact results

* Handles dynamics (loops, etc.)
 Easier to implement

e Can’t simplify expressions



Two Main “Flavors” of Autodiff

* Forward Mode Autodiff
* Compute derivatives alongside the program as it is running

* Reverse Mode Autodiff
* Run the program, then compute derivatives (in reverse order)



Computer-based Derivatives

* Numeric differentiation * Example:

* Symbolic differentiation
* Computer “does algebra” and

while abs(x) > 5:

simplifies expressions X=X/ 2
* What Wolfram Alpha does
* Exact (no approximation error) * This loop could run once or 100
« Complex to implement times, it’s impossible to know

* Only handles static expressions
(what about e.g. loops?)



Recap
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