
Deep Learning

Eric Ewing

CSCI 1470

Monday,
2/3/25

Day 6: Backprop and SGD

Where We left Off: Gradient Descent

• Algorithm to optimize
differentiable functions

• Used frequently elsewhere in AI
and optimization

• In DL, used to train/fit/optimize
network parameters

Starting point

Gradient points in direction of increasing loss

Goals for Today

(1) How do we find gradients of our neural network?
(1) Backprop (Backpropagation of Errors)

(2) How do we use those gradients to find good solutions?
(1) Stochastic Gradient Descent

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Why do we need a learning rate?

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Why do we need a learning rate?

Derivatives/Gradients only hold locally

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Understanding gradient descent is the single most
important concept in all of Deep Learning. Most decisions

in DL are made for reasons related to gradients.

Gradients

Gradient descent needs gradients, how do we actually calculate them?

Weight Matrix for a Layer of Neurons

• We have an input of size n and we want an output vector of size m.
• We will represent our weights as a matrix.

• What should the dimensions of our matrix be?

n inputs
m inputs

Weight Matrix

• We have an input of size n and we want an output vector of size m.
• We will represent our weights as a matrix.

• What should the dimensions of our matrix be?

n inputs
m inputs

Jacobians

• Gradients are for functions with multiple inputs and one output
• Hidden layers in our neural networks have multiple outputs
• The Jacobian matrix is the matrix of all partial derivatives

𝑓:ℝ𝑛 → ℝ𝑚

Output Variables:
[𝑓1, 𝑓2, … 𝑓𝑚]

Input Variables:
[𝑥1, 𝑥2, … , 𝑥𝑛]

Backprop Derivation

We will use the following notation:

𝕏 ∈ ℝ𝑛×𝑑: Data matrix
𝑊(𝑙): Weights matrix for layer l
𝑧(𝑙): output of neurons at layer l before activation
𝜎(𝑙): activation function of neurons at layer 𝑙
𝑎(𝑙): output of neurons at layer l after activation
ො𝑦: output of neural network
𝐿(𝑦, ො𝑦): Loss Function

Backprop Derivation (Blackboard)

ො𝑦 = 𝜎𝑘(𝑊𝑘 …𝜎2 (𝑊2𝜎1(𝑊1𝕏))))
Need: 𝑑𝐿

𝑑𝑊1 ,
𝑑𝐿

𝑑𝑊2 , …

Gradient Descent Revisited

• We can calculate gradients
efficiently, therefore we can run
gradient descent

• But what about all of its issues…

Starting point

Gradient points in direction of increasing loss

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Multiple local minima
Saddle points

Local maxima

Stochastic Gradient Descent

• (full) Gradient Descent is slow, need to calculate gradient with many
training examples

• Alternative: only use part of data at any given time (a batch)
• Sample small batch from dataset, compute gradient only using the batch

For N iterations or until Δ𝜃 < 𝜖:
 For each batch (𝕏𝑏, 𝑦𝑏) in (𝕏, 𝕪)
 Compute Loss 𝐿 = 𝑙𝑜𝑠𝑠𝑓𝑛(𝑓𝜃 𝕏𝑏 , 𝕪𝑏)

 Ԧ𝜃 ← 𝜃 − 𝛼
dL

d𝜃

Compute with Backprop!

SGD

• SGD does not always take
steps in the direction of the full
gradient
• Sometimes those steps make

total loss go up (i.e., can escape
local minima)

Stochastic Gradient Descent

Train faster, generalize better: Stability of stochastic gradient descent. Hardt et al.

SGD generalizes better than vanilla Gradient Descent.
(Generalization is performance on test set)

Recap

Backprop is an efficient algorithm for computing
gradients of neural networks

Stochastic Gradient Descent (SGD) is an optimization
algorithm that finds good network parameters given a

gradient

SGD uses batch learning updates for both efficiency
reasons and because it produces better solutions

	Slide 1
	Slide 2: Where We left Off: Gradient Descent
	Slide 3: Goals for Today
	Slide 4: Option 2: Gradient Descent
	Slide 5: Option 2: Gradient Descent
	Slide 6: Option 2: Gradient Descent
	Slide 7: Option 2: Gradient Descent
	Slide 8: Option 2: Gradient Descent
	Slide 9: Gradients
	Slide 10: Weight Matrix for a Layer of Neurons
	Slide 11: Weight Matrix
	Slide 12: Jacobians
	Slide 13
	Slide 14
	Slide 15: Backprop Derivation
	Slide 16: Backprop Derivation (Blackboard)
	Slide 17: Gradient Descent Revisited
	Slide 18: Non-Convex Functions
	Slide 19: Stochastic Gradient Descent
	Slide 20: SGD
	Slide 21: Stochastic Gradient Descent
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Recap

