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Where We left Off: Gradient Descent

• Algorithm to optimize 
differentiable functions

• Used frequently elsewhere in AI 
and optimization

• In DL, used to train/fit/optimize 
network parameters

Starting point

Gradient points in direction of increasing loss



Goals for Today

(1) How do we find gradients of our neural network?
(1) Backprop (Backpropagation of Errors)

(2) How do we use those gradients to find good solutions?
(1) Stochastic Gradient Descent



Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the 

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in 
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]
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Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Understanding gradient descent is the single most 
important concept in all of Deep Learning. Most decisions 

in DL are made for reasons related to gradients.



Gradients

Gradient descent needs gradients, how do we actually calculate them?



Weight Matrix for a Layer of Neurons

• We have an input of size n and we want an output vector of size m.
• We will represent our weights as a matrix.

• What should the dimensions of our matrix be?

n inputs
m inputs
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Jacobians

• Gradients are for functions with multiple inputs and one output
• Hidden layers in our neural networks have multiple outputs
• The Jacobian matrix is the matrix of all partial derivatives

𝑓:ℝ𝑛 → ℝ𝑚

Output Variables:
[𝑓1, 𝑓2, … 𝑓𝑚]

Input Variables:
[𝑥1, 𝑥2, … , 𝑥𝑛]







Backprop Derivation

We will use the following notation:

𝕏 ∈ ℝ𝑛×𝑑: Data matrix
𝑊(𝑙): Weights matrix for layer l
𝑧(𝑙): output of neurons at layer l before activation
𝜎(𝑙): activation function of neurons at layer 𝑙
𝑎(𝑙): output of neurons at layer l after activation
ො𝑦: output of neural network
𝐿(𝑦, ො𝑦): Loss Function



Backprop Derivation (Blackboard)

ො𝑦 = 𝜎𝑘(𝑊𝑘 …𝜎2 (𝑊2𝜎1(𝑊1𝕏))))
Need: 𝑑𝐿

𝑑𝑊1 ,
𝑑𝐿

𝑑𝑊2 , …



Gradient Descent Revisited

• We can calculate gradients 
efficiently, therefore we can run 
gradient descent

• But what about all of its issues…

Starting point

Gradient points in direction of increasing loss



Non-Convex Functions
MSE is not convex with respect to network parameters 
when non-linear activations are involved. 

𝑤1

𝑤2

Multiple local minima
Saddle points

Local maxima



Stochastic Gradient Descent

• (full) Gradient Descent is slow, need to calculate gradient with many 
training examples

• Alternative: only use part of data at any given time (a batch)
• Sample small batch from dataset, compute gradient only using the batch

For N iterations or until Δ𝜃 < 𝜖:
 For each batch (𝕏𝑏, 𝑦𝑏) in (𝕏, 𝕪) 
  Compute Loss 𝐿 = 𝑙𝑜𝑠𝑠𝑓𝑛(𝑓𝜃 𝕏𝑏 , 𝕪𝑏)

  Ԧ𝜃 ← 𝜃 − 𝛼
dL

d𝜃

Compute with Backprop!



SGD

• SGD does not always take 
steps in the direction of the full 
gradient
• Sometimes those steps make 

total loss go up (i.e., can escape 
local minima)



Stochastic Gradient Descent

Train faster, generalize better: Stability of stochastic gradient descent. Hardt et al.

SGD generalizes better than vanilla Gradient Descent.
(Generalization is performance on test set)





















Recap

Backprop is an efficient algorithm for computing 
gradients of neural networks

Stochastic Gradient Descent (SGD) is an optimization 
algorithm that finds good network parameters given a 

gradient

SGD uses batch learning updates for both efficiency 
reasons and because it produces better solutions
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